
GA4GH Documentation
Release undefined

Global Alliance for Genomics and Health

Mar 14, 2017

Contents

1 Contents 3
1.1 Introduction . 3
1.2 GA4GH API Demo . 3
1.3 Installation . 9
1.4 Configuration . 14
1.5 Data repository . 27
1.6 Development . 42
1.7 Status . 50

i

ii

GA4GH Documentation, Release undefined

This the documentation for version undefined of the GA4GH reference implementation.

Contents 1

GA4GH Documentation, Release undefined

2 Contents

CHAPTER 1

Contents

Introduction

The Data Working Group of the Global Alliance for Genomics and Health has defined an API to facilitate interoperable
exchange of genomic data. This is the the documentation for the reference implementation of the API.

Simplicity/clarity The main goal of this implementation is to provide an easy to understand and maintain implemen-
tation of the GA4GH API. Design choices are driven by the goal of making the code as easy to understand as
possible, with performance being of secondary importance. With that being said, it should be possible to provide
a functional implementation that is useful in many cases where the extremes of scale are not important.

Portability The code is written in Python for maximum portability, and it should be possible to run on any modern
computer/operating system (Windows compatibility should be possible, although this has not been tested). Our
coding guidelines specify using a subset of Python 3 which is backwards compatible with Python 2 following
the current best practices. The project currently does not yet support Python 3, as support for it is lacking in
several packages that we depend on. However, our eventual goal is to support both Python 2 and 3.

Ease of use The code follows the Python Packaging User Guide. Specifically, pip is used to handle python package
dependencies (see below for details). This provides easy installation of the ga4gh reference code across a range
of operating systems.

GA4GH API Demo

In this demo, we’ll install a copy of the GA4GH reference implementation and run a local version of the server using
some example data. We then run some example queries on this server using various different methods to illustrate the
basics of the protocol. The server can, of course, be run on any machine on the network, but for simplicity we assume
that the client and the server are running on your local machine during this demo.

The instructions for installation here are not intended to be used in a production deployment. See the Installation
section for a detailed guide on production installation. To run the demo, you will need a working installation of
Python 2.7 and also have virtualenv installed. We also need to have zlib and a few other common libraries installed so
that we can build some of the packages that the reference server depends on.

3

http://ga4gh.org/#/
http://genomicsandhealth.org/
https://ga4gh-schemas.readthedocs.org/en/latest/
http://python-future.org/compatible_idioms.html
http://python-packaging-user-guide.readthedocs.org/en/latest/
https://www.python.org/download/releases/2.7/
https://virtualenv.pypa.io/en/latest/
http://www.zlib.net/

GA4GH Documentation, Release undefined

On Debian/Ubuntu, for example, we can install these packages using:

$ sudo apt-get install python-dev python-virtualenv zlib1g-dev libxslt1-dev libffi-
→˓dev libssl-dev

On Fedora 22+ (current), the equivalent would be:

$ sudo dnf install python-devel python-virtualenv zlib-devel libxslt-devel openssl-
→˓devel

First, we create a virtualenv sandbox to isolate the demo from the rest of the system, and then activate it:

$ virtualenv ga4gh-env
$ source ga4gh-env/bin/activate

Now, install the ga4gh package from the Python package index. This will take some time, as some upstream packages
will need to be built and installed.

(ga4gh-env) $ pip install ga4gh-server --pre

(Older versions of pip might not recognise the --pre argument; if not, it is safe to remove it.)

Now we can download some example data, which we’ll use for our demo:

(ga4gh-env) $ wget https://github.com/ga4gh/ga4gh-server/releases/download/data/ga4gh-
→˓example-data_4.6.tar
(ga4gh-env) $ tar -xvf ga4gh-example-data_4.6.tar

After extracting the data, we can then run the ga4gh_server application:

(ga4gh-env) $ ga4gh_server

* Running on http://127.0.0.1:8000/ (Press CTRL+C to quit)

* Restarting with stat

(The server is using a default configuration which assumes the existence of the ga4gh-example-data directory
for simplicity here; see the Configuration section for detailed information on how we configure the server.) We now
have a server running in the foreground. When it receives requests, it will print out log entries to the terminal. A
summary of the server’s configuration and data is available in HTML format at http://locahost:8000, which
can be viewed in a web browser. Leave the server running and open another terminal to complete the rest of the demo.

To try out the server, we must send some requests to it using the GA4GH protocol. One way in which we can do this
is to manually create the JSON requests, and send these to the server using cURL:

$ curl --data '{}' --header 'Content-Type: application/json' \
http://localhost:8000/datasets/search | jq .

In this example, we used the search_datasets method to ask the server for all the Datasets on the server. It responded by
sending back some JSON, which we piped into the jq JSON processor to make it easier to read. We get the following
result:

{
"nextPageToken": null,
"datasets": [
{

"description": null,
"name": "1kg-p3-subset",
"id": "MWtnLXAzLXN1YnNldA=="

}

4 Chapter 1. Contents

https://pypi.python.org/pypi/ga4gh
https://pypi.python.org/pypi
https://pip.pypa.io/en/latest/
http://ga4gh.org/#/api
http://json.org/
http://curl.haxx.se/
http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/schema/org.ga4gh.search_datasets
https://stedolan.github.io/jq/

GA4GH Documentation, Release undefined

]
}

In this example we sent a SearchDatasetsRequest object to the server and received a SearchDatasetsResponse object in
return. This response object contained one Dataset object, which is contained in the datasets array. This approach
to interacting with the server is tedious and error prone, as we have to hand-craft the request objects. It is also quite
inconvenient, as we may have to request many pages of objects to get all the objects that satisfy our search criteria.

To simplify interacting with the server and to abstract away the low-level network-level details of the server, we provide
a client application. To try this out, we start another instance of our virtualenv, and then send the equivalent command
using:

$ source ga4gh-env/bin/activate
(ga4gh-env) $ ga4gh_client datasets-search http://localhost:8000

MWtnLXAzLXN1YnNldA== 1kg-p3-subset

The output of this command is a summary of the Datasets on that are present on the server. We can also get the output
in JSON form such that each object is written on one line:

(ga4gh-env) $ ga4gh_client datasets-search -O json http://localhost:8000

{"description": null, "name": "1kg-p3-subset", "id": "MWtnLXAzLXN1YnNldA=="}

This format is quite useful for larger queries, and can be piped into jq to extract fields of interest, pretty printing and
so on.

We can perform similar queries for variant data using the search_variants API call. First, we find the IDs of the
VariantSets on the server using the search_variant_sets method:

(ga4gh-env) $ ga4gh_client variantsets-search http://localhost:8000

MWtnLXAzLXN1YnNldDptdm5jYWxs mvncall

This tells us that we have one VariantSet on the server, with ID MWtnLXAzLXN1YnNldDptdm5jYWxs and name
mvncall. We can then search for variants overlapping a given interval in a VariantSet as follows:

(ga4gh-env) $ ga4gh_client variants-search http://localhost:8000 \
--referenceName=1 --start=45000 --end=50000

The output of the client program is a summary of the data received in a free text form. This is not intended to be used
as the input to other programs, and is simply a data exploration tool for users. To really use our data, we should use a
GA4GH client library.

Part of the GA4GH reference implementation is a client library. This makes sending requests to the server and using
the responses very easy. For example, to run the same query as we performed above, we can use the following code:

from __future__ import print_function

from ga4gh.client import client

httpClient = client.HttpClient("http://localhost:8000")
Get the datasets on the server.
datasets = list(httpClient.search_datasets())
Get the variantSets in the first dataset.
variantSets = list(httpClient.search_variant_sets(

1.2. GA4GH API Demo 5

http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/schema/org.ga4gh.search_variants
http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/schema/org.ga4gh.search_variant_sets

GA4GH Documentation, Release undefined

dataset_id=datasets[0].id))
Now get the variants in the interval [45000, 50000) on chromosome 1
in the first variantSet.
iterator = httpClient.search_variants(

variant_set_id=variantSets[0].id,
reference_name="1", start=45000, end=50000)

for variant in iterator:
print(

variant.reference_name, variant.start, variant.end,
variant.reference_bases, variant.alternate_bases, sep="\t")

If we save this script as ga4gh-demo.py we can then run it using:

(ga4gh-env) $ python ga4gh-demo.py

Host the 1000 Genomes VCF

The GA4GH reference server uses a registry of files and URLs to populate its data repository. In this tutorial we will
use the command-line client to create a registry similar to that used by 1kgenomes.ga4gh.org. Your system should
have samtools installed, and at least 30GB to host the VCF and reference sets.

Repo administrator CLI

The CLI has methods for adding and removing Feature Sets, Read Group Sets, Variant Sets, etc. Before we can begin
adding files we must first initialize an empty registry database. The directory that this database is in should be readable
and writable by the current user, as well as the user running the server.

$ ga4gh_repo init registry.db

This command will create a file registry.db in the current working directory. This file should stay relatively small
(a few MB for thousands of files).

Now we will add a dataset to the registry, which is a logical container for the genomics data we will later add. You
can optionally provide a description using the --description flag.

$ ga4gh_repo add-dataset registry.db 1kgenomes \
--description "Variants from the 1000 Genomes project and GENCODE genes

→˓annotations"

Add a Reference Set

It is possible for a server to host multiple reference assemblies. Here we will go through all the steps of downloading
and adding the FASTA used for the 1000 Genomes VCF.

$ wget ftp://ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_
→˓assembly_sequence/hs37d5.fa.gz

This file is provided in .gz format, which we will decompress, and then with samtools installed on the system,
recompress it using bgzip.

$ gunzip hs37d5.fa.gz
$ bgzip hs37d5.fa

6 Chapter 1. Contents

GA4GH Documentation, Release undefined

This may take a few minutes depending on your system as this file is around 3GB. Next, we will add the reference set.

$ ga4gh_repo add-referenceset registry.db /full/path/to/hs37d5.fa.gz \
-d “NCBI37 assembly of the human genome” \
--species '{"id": "9606", "term": "Homo sapiens", "source_name": "NCBI", "source_

→˓version: "1.0"}' \
--name NCBI37 \
--sourceUri "ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_

→˓reference_assembly_sequence/hs37d5.fa.gz"

A number of optional command line flags have been added. We will be referring to the name of this reference set
NCBI37 when we later add the variant set.

Add an ontology

Ontologies provide a source for parsing variant annotations, as well as organizing feature types into ontology terms. A
sequence ontology instance must be added to the repository to translate ontology term names in sequence and variant
annotations to IDs. Sequence ontology definitions can be downloaded from the Sequence Ontology site.

$ wget https://raw.githubusercontent.com/The-Sequence-Ontology/SO-Ontologies/master/
→˓so-xp-dec.obo
$ ga4gh_repo add-ontology registry.db /full/path/to/so-xp.obo -n so-xp

Add sequence annotations

The GENCODE Genes dataset provides annotations for features on the reference assembly. The server uses a custom
storage format for sequence annotations, you can download a prepared set here. It can be added to the registry using the
following command. Notice we have told the registry to associate the reference set added above with these annotations.

$ wget https://ga4ghstore.blob.core.windows.net/testing/gencode_v24lift37.db
$ ga4gh_repo add-featureset registry.db 1kgenomes /full/path/to/gencode.v24lift37.
→˓annotation.db \

--referenceSetName NCBI37 --ontologyName so-xp

Add the 1000 Genomes VCFs

The 1000 Genomes are publicly available on the EBI server. This command uses wget to download the “release”
VCFs to a directory named release.

$ wget -m ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ -nd -P release -
→˓l 1
$ rm release/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf.gz

These files are already compressed and indexed. For the server to make use of the files in this directory we must
move the wgs file, since it covers chromosomes that are represented elsewhere and overlapping VCF are not currently
supported. This file could be added as a separate variant set.

We can now add the directory to the registry using the following command. Again, notice we have referred to the
reference set by name.

$ ga4gh_repo add-variantset registry.db 1kgenomes /full/path/to/release/ \
--name phase3-release --referenceSetName NCBI37

1.2. GA4GH API Demo 7

http://www.sequenceontology.org/
https://github.com/The-Sequence-Ontology/SO-Ontologies
https://ga4ghstore.blob.core.windows.net/testing/gencode_v24lift37.db

GA4GH Documentation, Release undefined

Add a BAM as a Read Group Set

Read Group Sets are the logical equivalent to BAM files within the server. We will add a BAM hosting by the 1000
Genomes S3 bucket. We will first download the index and then add it to the registry.

$ wget http://s3.amazonaws.com/1000genomes/phase3/data/HG00096/alignment/HG00096.
→˓mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai
$ ga4gh_repo add-readgroupset registry.db 1kgenomes \

-I HG00096.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai \
--referenceSetName NCBI37 \
http://s3.amazonaws.com/1000genomes/phase3/data/HG00096/alignment/HG00096.mapped.

→˓ILLUMINA.bwa.GBR.low_coverage.20120522.bam \

This might take a moment as some metadata about the file will be retrieved from S3.

Start the server

Assuming you have set up your server to run using the registry file just created, you can now start or restart the server
to see the newly added data. If the server is running via apache issue sudo service apache2 restart. You
can then visit the landing page of the running server to see the newly added data.

Use the client package

If you only want to use the client and don’t need the server functionality, there is a seperate pypi package, ga4gh-client,
which includes only the client. It is also much quicker to install. To install, simply run:

(ga4gh-env) $ pip install --pre ga4gh_client

This installs the ga4gh_client command line program, which provides identical functionality to the
ga4gh_client which is installed via the ga4gh package:

(ga4gh-env) $ ga4gh_client datasets-search http://1kgenomes.ga4gh.org

Installing the ga4gh_client package also gives you access to the client’s libraries for use in your own programs:

>>> from ga4gh.client import client
>>> client.HttpClient
<class 'ga4gh_client.client.HttpClient'>

For more examples of using the GA4GH client visit this iPython notebook.

OIDC Demonstration

If we want authentication, we must have an OIDC authentication provider. One can be found in oidc-provider,
and run with the run.sh script. We can then use this with the LocalOidConfig server configuration. So:

$ cd oidc-provider && ./run.sh

In another shell on the same machine

$ python server_dev.py -c LocalOidConfig

Make sure you know the hostname the server is running on. It can be found with

8 Chapter 1. Contents

https://pypi.python.org/pypi/ga4gh-client
https://github.com/BD2KGenomics/bioapi-examples/blob/master/python_notebooks/1kg.ipynb

GA4GH Documentation, Release undefined

$ python -c 'import socket; print socket.gethostname()'

With a web browser, go to https://<server hostname>:<server port>. You may need to accept the
security warnings as there are probably self-signed certificates. You will be taken through an authentication flow.
When asked for a username and password, try upper and crust. You will find yourself back at the ga4gh server
homepage. On the homepage will be a ‘session token’ This is the key to access the server with the client tool as
follows:

(ga4gh-env) $ ga4gh_client --key <key from homepage> variantsets-search https://
→˓localhost:8000/current
MWtnLXAzLXN1YnNldDptdm5jYWxs mvncall

Installation

This section documents the process of deploying the GA4GH reference server in a production setting. The intended
audience is therefore server administrators. If you are looking for a quick demo of the GA4GH API using a local
installation of the reference server please check out the GA4GH API Demo. If you are looking for instructions to get
a development system up and running, then please go to the Development section.

Deployment on Apache

To deploy on Apache on Debian/Ubuntu platforms, do the following.

First, we install some basic pre-requisite packages:

sudo apt-get install python-dev python-virtualenv zlib1g-dev libxslt1-dev libffi-dev
→˓libssl-dev libcurl4-openssl-dev

Install Apache and mod_wsgi, and enable mod_wsgi:

sudo apt-get install apache2 libapache2-mod-wsgi
sudo a2enmod wsgi

Create the Python egg cache directory, and make it writable by the www-data user:

sudo mkdir /var/cache/apache2/python-egg-cache
sudo chown www-data:www-data /var/cache/apache2/python-egg-cache/

Create a directory to hold the GA4GH server code, configuration and data. For convenience, we make this owned by
the current user (but make sure all the files are world-readable).:

sudo mkdir /srv/ga4gh
sudo chown $USER /srv/ga4gh
cd /srv/ga4gh

Make a virtualenv, and install the ga4gh package:

virtualenv ga4gh-server-env
source ga4gh-server-env/bin/activate
pip install ga4gh-server
deactivate

Download and unpack the example data:

1.3. Installation 9

GA4GH Documentation, Release undefined

wget https://github.com/ga4gh/ga4gh-server/releases/download/data/ga4gh-example-data_
→˓4.6.tar
tar -xf ga4gh-example-data_4.6.tar

Create the WSGI file at /srv/ga4gh/application.wsgi and write the following contents:

from ga4gh.server.frontend import app as application
import ga4gh.server.frontend as frontend
frontend.configure("/srv/ga4gh/config.py")

Create the configuration file at /srv/ga4gh/config.py, and write the following contents:

DATA_SOURCE = "/srv/ga4gh/ga4gh-example-data/registry.db"

Note that it is expected that the user running the server, www-data, have write and read access to the directories
containing data files.

(Many more configuration options are available — see the Configuration section for a detailed discussion on the server
configuration and input data.)

Configure Apache. Note that these instructions are for Apache 2.4 or greater. Edit the file /etc/apache2/
sites-available/000-default.conf and insert the following contents towards the end of the file (within
the <VirtualHost:80>...</VirtualHost> block):

WSGIDaemonProcess ga4gh \
processes=10 threads=1 \
python-path=/srv/ga4gh/ga4gh-server-env/lib/python2.7/site-packages \
python-eggs=/var/cache/apache2/python-egg-cache

WSGIScriptAlias /ga4gh /srv/ga4gh/application.wsgi

<Directory /srv/ga4gh>
WSGIProcessGroup ga4gh
WSGIApplicationGroup %{GLOBAL}
Require all granted

</Directory>

Warning: Be sure to keep the number of threads limited to 1 in the WSGIDaemonProcess setting. Performance
tuning should be done using the processes setting.

The instructions for configuring Apache 2.2 (on Ubuntu 14.04) are the same as above with thee following exceptions:

You need to edit /etc/apache2/sites-enabled/000-default

instead of /etc/apache2/sites-enabled/000-default.conf

And while in that file, you need to set permissions for the directory to

Allow from all

instead of

Require all granted

Now restart Apache:

sudo service apache2 restart

10 Chapter 1. Contents

GA4GH Documentation, Release undefined

We will now test to see the server started properly by requesting the landing page.

curl http://localhost/ga4gh/ --silent | grep GA4GH
<title>GA4GH reference server 0.2.3.dev4+nge0b07f3</title>
<h2>GA4GH reference server 0.2.3.dev4+nge0b07f3</h2>
Welcome to the GA4GH reference server landing page! This page describes

We can also test the server by running some API commands. Please refer to the instructions in the GA4GH API Demo
for how to access data made available by this server.

There are any number of different ways in which we can set up a WSGI application under Apache, which may be
preferable in different installations. (In particular, the Apache configuration here may be specific to Ubuntu 14.04,
where this was tested.) See the mod_wsgi documentation for more details. These instructions are also specific to
Debian/Ubuntu and different commands and directory structures will be required on different platforms.

The server can be deployed on any WSGI compliant web server. See the instructions in the Flask documentation for
more details on how to deploy on various other servers.

Troubleshooting

Server errors will be output to the web server’s error log by default (in Apache on Debian/Ubuntu, for example, this is
/var/log/apache2/error.log). Each client request will be logged to the web server’s access log (in Apache
on Debian/Ubuntu this is /var/log/apache2/access.log).

For more server configuration options see Configuration

Deployment on Docker

It is also possible to deploy the server using Docker.

First, you need an environment running the docker daemon. For non-production use, we recommend boot2docker.
For production use you should install docker on a stable linux distro. Please reference the platform specific Docker
installation instructions. OSX and Windows are instructions for boot2docker.

Local Dataset Mounted as Volume

If you already have a dataset on your machine, you can download and deploy the apache server in one command:

docker run -e GA4GH_DATA_SOURCE=/data -v /my/ga4gh_data/:/data:ro -d -p 8000:80 --
→˓name ga4gh_server ga4gh/ga4gh-server:latest

Replace /my/ga4gh_data/ with the path to your data.

This will:

• pull the automatically built image from Dockerhub

• start an apache server running mod_wsgi on container port 80

• mount your data read-only to the docker container

• assign a name to the container

• forward port 8000 to the container.

For more information on docker run options, see the run reference.

Demo Dataset Inside Container

If you do not have a dataset yet, you can deploy a container which includes the demo data:

1.3. Installation 11

https://code.google.com/p/modwsgi/
http://flask.pocoo.org/docs/0.10/deploying/
http://boot2docker.io/
https://docs.docker.com/installation/
https://docs.docker.com/installation/
https://registry.hub.docker.com/u/ga4gh/ga4gh-server/
https://docs.docker.com/reference/run/

GA4GH Documentation, Release undefined

docker run -d -p 8000:80 --name ga4gh_demo ga4gh/ga4gh-server:latest

This is identical to the production container, except that a copy of the demo data is included and appropriate defaults
are set.

Developing Client Code: Run a Client Container and a Server

In this example you run a server as a daemon in one container, and the client as an ephemeral instance in another
container. From the client, the server is accessible at http://server/, and the /tmp/mydev directory is mounted
at /app/mydev/. Any changes you make to scripts in mydev will be reflected on the host and container and persist
even after the container dies.

make a development dir and place the example client script in it
mkdir /tmp/mydev
curl https://raw.githubusercontent.com/ga4gh/ga4gh-server/master/scripts/demo_example.
→˓py > /tmp/mydev/demo_example.py
chmod +x /tmp/mydev/demo_example.py

start the server daemon
assumes the demo data on host at /my/ga4gh_data
docker run -e GA4GH_DEBUG=True -e GA4GH_DATA_SOURCE=/data -v /my/ga4gh_data/:/data:ro
→˓-d --name ga4gh_server ga4gh/ga4gh-server:latest

start the client and drop into a bash shell, with mydev/ mounted read/write
--link adds a host entry for server, and --rm destroys the container when you exit
docker run -e GA4GH_DEBUG=True -v /tmp/mydev/:/app/mydev:rw -it --name ga4gh_client --
→˓link ga4gh_server:server --entrypoint=/bin/bash --rm ga4gh/ga4gh-server:latest

call the client code script
root@md5:/app# ./mydev/demo_example.py

call the command line client
root@md5:/app# ga4gh_client variantsets-search http://server/current

#exit and destroy the client container
root@md5:/app# exit

Ports

The -p 8000:80 argument to docker run will run the docker container in the background, and translate calls
from your host environment port 8000 to the docker container port 80. At that point you should be able to access
it like a normal website, albeit on port 8000. Running in boot2docker, you will need to forward the port from the
boot2docker VM to the host. From a terminal on the host to forward traffic from localhost:8000 to the VM 8000 on
OSX:

VBoxManage controlvm boot2docker-vm natpf1 "ga4gh,tcp,127.0.0.1,8000,,8000"

For more info on port forwarding see the VirtualBox manual and this wiki article.

Advanced

If you want to build the images yourself, that is possible. The ga4gh/ga4gh-server repo builds automatically on new
commits, so this is only needed if you want to modify the Dockerfiles, or build from a different source.

The prod and demo builds are based off of mod_wsgi-docker, a project from the author of mod_wsgi. Please reference
the Dockerfiles and documentation for that project during development on these builds.

Examples

12 Chapter 1. Contents

http://boot2docker.io/
https://www.virtualbox.org/manual/ch06.html#natforward
https://github.com/CenturyLinkLabs/panamax-ui/wiki/How-To%3A-Port-Forwarding-on-VirtualBox
https://registry.hub.docker.com/u/ga4gh/ga4gh-server/
https://github.com/GrahamDumpleton/mod_wsgi-docker

GA4GH Documentation, Release undefined

Build the code at server/ and run for production, serving a dataset on local host located at /my/dataset

cd server/
docker build -t my-repo/my-image .
docker run -e GA4GH_DATA_SOURCE=/dataset -v /my/dataset:/dataset:ro -itd -p 8000:80 --
→˓name ga4gh_server my-repo/my-image

Build and run the production build from above, with the demo dataset in the container (you will need to modify the
FROM line in /deploy/variants/demo/Dockerfile if you want to use your image from above as the base):

Troubleshooting Docker

DNS

The docker daemon’s DNS may be corrupted if you switch networks, especially if run in a VM. For boot2docker,
running udhcpc on the VM usually fixes it. From a terminal on the host:

eval "$(boot2docker shellinit)"
boot2docker ssh
> sudo udhcpc
(password is tcuser)

DEBUG

To enable DEBUG on your docker server, call docker run with -e GA4GH_DEBUG=True

docker run -itd -p 8000:80 --name ga4gh_demo -e GA4GH_DEBUG=True ga4gh/ga4gh-
→˓server:latest

This will set the environment variable which is read by config.py

You can then get logs from the docker container by running docker logs (container) e.g. docker logs
ga4gh_demo

Installing the development version on Mac OS X

Prerequisites

First install libraries and header code for Python 2.7. It will be a lot easier if you have Homebrew, the “missing
package manager” for OS X, installed first. To install Homebrew, paste the following at a Terminal prompt ($):

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)"

Now use brew install to install Python if you don’t have Python 2.7 installed and then pip install, which
comes with Python, can be used to install virtual environment:

brew install python
pip install virtualenv

Install

Download source code from GitHub to the project target folder, here assumed to be ~/ga4gh: (If you haven’t already
done so, set up github to work from your command line.)

git clone https://github.com/ga4gh/ga4gh-server.git

1.3. Installation 13

https://www.python.org/download/releases/2.7/
http://brew.sh/index.html
https://help.github.com/articles/set-up-git/

GA4GH Documentation, Release undefined

Before installing Python library dependencies, create a virtualenv sandbox to isolate it from the rest of the system, and
then activate it:

cd server
virtualenv ga4gh-env
source ga4gh-env/bin/activate

Install Python dependencies:

pip install -r dev-requirements.txt -c constraints.txt

Test and run

Run tests to verify the install:

ga4gh_run_tests

Please refer to the instructions in the GA4GH API Demo for how to access data made available by this server.

Configuration

The GA4GH reference server Configuration file. allows Flask and application specific configuration values to be set.

Configuration file

The GA4GH reference server is a Flask application and uses the standard Flask configuration file mechanisms. Many
configuration files will be very simple, and will consist of just one directive instructing the server where to find the
data repository; example, we might have

DATA_SOURCE = "/path/to/registry.db"

For production deployments, we shouldn’t need to add any more configuration than this, as the other keys have sensible
defaults. However, all of Flask’s builtin configuration values are supported, as well as the extra custom configuration
values documented here. For information on preparing a data source see Data repository .

When debugging deployment issues, it can be very useful to turn on extra debugging information as follows:

DEBUG = True

Warning: Debugging should only be used temporarily and not left on by default. Running the server with Flask
debugging enable is insecure and should never be used in a production environment.

Configuration Values

DEFAULT_PAGE_SIZE The default maximum number of values to fill into a page when responding to search
queries. If a client does not specify a page size in a query, this value is used.

MAX_RESPONSE_LENGTH The approximate maximum size of the server buffer used when creating responses.
This is somewhat smaller than the size of the JSON response returned to the client. When a client makes a
search request with a given page size, the server will process this query and incrementally build a response until
(a) the number of values in the page list is equal to the page size; (b) the size of the internal buffer in bytes is >=
MAX_RESPONSE_LENGTH; or (c) there are no more results left in the query.

14 Chapter 1. Contents

http://flask.pocoo.org/
http://flask.pocoo.org/docs/0.10/config/
http://flask.pocoo.org/docs/0.10/config/

GA4GH Documentation, Release undefined

REQUEST_VALIDATION Set this to True to strictly validate all incoming requests to ensure that they conform to
the protocol. This may result in clients with poor standards compliance receiving errors rather than the expected
results.

INITIAL_PEERS When starting, you can set a list of initial peers to contact using a simple text file. Add a URL per
line for peers you would like to add to the registry as initial peers. Each time the server starts, this set of peers
will be announced and added to the registry.

LANDING_MESSAGE_HTML The server provides a simple landing page at its root. By setting this value to point
at a file containing an HTML block element it is possible to customize the landing page. This can be helpful to
provide support links or details about the hosted datasets.

OIDC_PROVIDER If this value is provided, then OIDC is configured and SSL is used. It is the URI of the OpenID
Connect provider, which should return an OIDC provider configuration document.

OIDC_REDIRECT_URI The URL of the redirect URI for OIDC. This will be something like https://
SERVER_NAME:PORT/oauth2callback. During testing (and particularly in automated tests), if TEST-
ING is True, we can have this automatically configured, but this is discouraged in production, and fails if
TESTING is not True.

OIDC_CLIENT_ID, OIDC_CLIENT_SECRET These are the client id and secret arranged with the OIDC
provider, if client registration is manual (google, for instance). If the provider supports automated registration
they are not required or used.

OIDC_AUTHZ_ENDPOINT, OIDC_TOKEN_ENDPOINT, OIDC_TOKEN_REV_ENDPOINT If the autho-
rization provider has no discovery document available, you can set the authorization and token endpoints here.

CACHE_DIRECTORY This directory is used to share data between processes when the server is run in a production
environment. It defaults to /tmp/ga4gh/.

SECRET_KEY The secret key used by the server to encrypt cookies. Preferably, this should be a long (~24 charac-
ters) random string, however any string will work.

AUTH0_ENABLED When set to true, enables authentication via Auth0.

AUTH0_SCOPES These are the login identity providers that an Auth0 application is configured to accept. More
about scopes can be seen here.

AUTH0_CALLBACK_URL This configuration value let’s Auth0 know which URL to return a session to after au-
thentication. It should match the setting in your Auth0 configuration.

AUTH0_HOST The Auth0 host is the domain under which the Auth0 account is hosted.

AUTH0_CLIENT_ID Each application is authenticated to your Auth0 account using a Client ID and secret. This is
available in the Auth0 configuration.

AUTH0_CLIENT_SECRET The client secret is a preshared key between your instance of the server and Auth0 and
is available in the Auth0 configuration panel.

AUTHORIZED_EMAILS A comma separated list of user

Configuring Auth0 Service

First login or sign up in Auth0 website: https://auth0.com/

Creating Client

On tab Client click in Create Client. Give a name for your Client and choose the Non Interactive
Clients client type. Click Create.

1.4. Configuration 15

https://auth0.com/docs/scopes
https://auth0.com/

GA4GH Documentation, Release undefined

16 Chapter 1. Contents

GA4GH Documentation, Release undefined

In Settings tab copy the Domain, Client ID and Client Secret data.

These data will be used to set the following server configuration values (reference): - AUTH0_HOST with Domain; -
AUTH0_CLIENT_ID with Client ID; - AUTH0_CLIENT_SECRET with Client Secret.

Fill Allowed Callback URLs, Allowed Logout URLs and Allowed Origins (CORS) with the web
address of server endpoint plus the related path.

Creating API

Go to APIs tab and click in Create API. The Identifier should be the URL of server endpoint (the landing
page). For this example I am using root path and TCP port 80.

On Scopes tab, create two scopes: openid and email.

On Non Interactive Clients tab, authorize the previous created Client. Select both scopes openid and
email. Click Update then Continue.

Creating Database Connections

Go to Connections-Database tab and click Create DB Connection. I disabled sign ups because I want
to have control over user creation allowing only certain people/software to have access on server.

In Clients tab, activate the connection between the Client and the Database.

Creating Users

Go to Users tab and click Create User. Fill the fields. Connection should be same one previously created.
An email will be send requesting to verify. I recommend creating your own user for testing purposes.

1.4. Configuration 17

http://ga4gh-reference-implementation.readthedocs.io/en/latest/configuration.html#configuration-values

GA4GH Documentation, Release undefined

18 Chapter 1. Contents

GA4GH Documentation, Release undefined

1.4. Configuration 19

GA4GH Documentation, Release undefined

20 Chapter 1. Contents

GA4GH Documentation, Release undefined

1.4. Configuration 21

GA4GH Documentation, Release undefined

22 Chapter 1. Contents

GA4GH Documentation, Release undefined

Setting up GA4GH server with authentication

Append the following server configuration values to config.py file (reference). Remember to update the fields
correctly. Create a SECRET_KEY. I didn’t understand the field AUTH0_AUTHORIZED_EMAILS. I just used the
same email I used to login into Auth0 website.

AUTH0_ENABLED = True
SECRET_KEY = "super_secret"
AUTH0_SCOPES = "openid email"
AUTH0_CALLBACK_URL = "http://192.168.0.5/callback"
AUTH0_HOST = "USER.auth0.com"
AUTH0_CLIENT_ID = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
AUTH0_CLIENT_SECRET =
→˓"XX"
AUTH0_AUTHORIZED_EMAILS = "name@host.com"

Restart the server.

Testing

Finally access server landing page. It will show an error and a link to login. At login page, use the same email and
password used to create a user. Note that it does not have an option to create a user (it can be changed).

After login you will see the token page.

1.4. Configuration 23

https://github.com/ga4gh/server/pull/1470

GA4GH Documentation, Release undefined

OpenID Connect Providers

The server can be configured to use OpenID Connect (OIDC) for authentication. As an example, here is how one
configures it to use Google as the provider.

Go to https://console.developers.google.com/project and in create a project.

Navigate to the project -> APIs & auth -> Consent Screen and enter a product name

24 Chapter 1. Contents

https://console.developers.google.com/project

GA4GH Documentation, Release undefined

Navigate to project -> APIs & auth -> Credentials, and create a new client ID.

Create the client as follows:

1.4. Configuration 25

GA4GH Documentation, Release undefined

Which will give you the necessary client id and secret. Use these in the OIDC configuration for the GA4GH server,
using the OIDC_CLIENT_ID and OIDC_CLIENT_SECRET configuration variables. The Redirect URI should match
the OIDC_REDIRECT_URI configuration variable, with the exception that the redirect URI shown at google does not
require a port (but the configuration variable does). Finally, set the SECRET_KEY to any string for storing cookies.

26 Chapter 1. Contents

GA4GH Documentation, Release undefined

Data repository

Each GA4GH server represents a repository of information. This repository consists of the reference sets, datasets,
readgroup sets, variant sets etc. in the server’s data model and may contain data from many different unrelated projects.
The server administrator defines and manages this repository using the ga4gh_repo command line interface, which
provides commands to manage all of the objects represented by a GA4GH server.

The information about the objects in the GA4GH data model is stored in an SQL database, called the “registry DB”
or “registry”. The registry DB does not contain the raw bulk data but rather “registers” the information about where
the server can find this information and some metadata about the object in question. For example, if we have a variant
set that is backed by a single VCF file, the registry DB will contain the path to this file as well as the name of the
variant set, the reference set it is defined by, and other information necessary to implement the GA4GH protocol. This
registry architecture allows us a lot of flexibility in the sources of data that we can use.

Command Line

init

The init command initialises a new registry DB at a given file path. This is the first command that must be issued
when creating a new GA4GH repository.

usage: ga4gh_repo init [-h] [-f] registryPath

Positional arguments:

registryPath the location of the registry database

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo init registry.db

1.5. Data repository 27

GA4GH Documentation, Release undefined

list

The list command is used to print the contents of a repository to the screen. It is an essential tool for administrators
to understand the structure of the repository that they are managing.

Note: The list command is under development and will be much more sophisticated in the future. In particular,
the output of this command should improve considerably in the near future.

usage: ga4gh_repo list [-h] registryPath

Positional arguments:

registryPath the location of the registry database

Examples:

$ ga4gh_repo list registry.db

list-announcements

To view the announcements the server has received, use this command. It will output the announcements as a TSV
that can be imported into a spreadsheet application.

usage: ga4gh_repo list-announcements [-h] registryPath

Positional arguments:

registryPath the location of the registry database

Examples:

$ ga4gh_repo list-announcements registry.db > announcements.tsv

clear-announcements

To clear the received announcements run this command. This cannot be undone.

usage: ga4gh_repo clear-announcements [-h] registryPath

Positional arguments:

registryPath the location of the registry database

Examples:

$ ga4gh_repo clear-announcements registry.db

verify

The verify command is used to check that the integrity of the data in a repository. The command checks each
container object in turn and ensures that it can read data from it. Read errors can occur for any number of reasons (for
example, a VCF file may have been moved to another location since it was added to the registry), and the verify
command allows an administrator to check that all is well in their repository.

28 Chapter 1. Contents

GA4GH Documentation, Release undefined

Note: The verify command is under development and will be much more sophisticated in the future. In particular,
the output of this command should improve considerably in the near future.

usage: ga4gh_repo verify [-h] registryPath

Positional arguments:

registryPath the location of the registry database

Examples:

$ ga4gh_repo verify registry.db

add-peer

The server maintains a list of known peers. To add a peer to this list use the add-peer command.

usage: ga4gh_repo add-peer [-h] [-A ATTRIBUTES] registryPath url

Positional arguments:

registryPath the location of the registry database

url The URL of the given resource

Options:

-A, --attributes additional attributes for the message expressed as JSON

Examples:

$ ga4gh_repo add-peer http://1kgenomes.ga4gh.org

remove-peer

You can remove a peer from the list of peers by its URL.

usage: ga4gh_repo remove-peer [-h] [-f] registryPath url

Positional arguments:

registryPath the location of the registry database

url The URL of the given resource

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-peer http://1kgenomes.ga4gh.org

1.5. Data repository 29

GA4GH Documentation, Release undefined

add-dataset

Creates a new dataset in a repository. A dataset is an arbitrary collection of ReadGroupSets, VariantSets, VariantAn-
notationSets and FeatureSets. Each dataset has a name, which is used to identify it in the repository manager.

usage: ga4gh_repo add-dataset [-h] [-A ATTRIBUTES] [-d DESCRIPTION]
registryPath datasetName

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

Options:

-A, --attributes additional attributes for the message expressed as JSON

-d, --description The human-readable description of the dataset.

Examples:

$ ga4gh_repo add-dataset registry.db 1kg -d 'Example dataset using 1000 genomes data'

Adds the dataset with the name 1kg and description 'Example dataset using 1000 genomes data' to
the registry database registry.db.

add-referenceset

Adds a reference set derived from a FASTA file to a repository. Each record in the FASTA file will correspond to
a Reference in the new ReferenceSet. The input FASTA file must be compressed with bgzip and indexed using
samtools faidx. Each ReferenceSet contains a number of metadata values (.e.g. species) which can be set
using command line options.

usage: ga4gh_repo add-referenceset [-h] [-A ATTRIBUTES] [-r] [-n NAME]
[-d DESCRIPTION] [--species SPECIES]
[--isDerived ISDERIVED]
[--assemblyId ASSEMBLYID]
[--sourceAccessions SOURCEACCESSIONS]
[--sourceUri SOURCEURI]
registryPath filePath

Positional arguments:

registryPath the location of the registry database

filePath The path of the FASTA file to use as a reference set. This file must be
bgzipped and indexed.

Options:

-A, --attributes additional attributes for the message expressed as JSON

-r, --relativePath store relative path in database

-n, --name The name of the reference set

-d, --description The human-readable description of the reference set.

--species The species ontology term as a JSON string

--isDerived Indicates if this reference set is derived from another

30 Chapter 1. Contents

GA4GH Documentation, Release undefined

--assemblyId The assembly id

--sourceAccessions The source accessions (pass as comma-separated list)

--sourceUri The source URI

Examples:

$ ga4gh_repo add-referenceset registry.db hs37d5.fa.gz \
--description "NCBI37 assembly of the human genome" \
--species '{"termId": "NCBI:9606", "term": "Homo sapiens"}' \
--name NCBI37 \
--sourceUri ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_

→˓reference_assembly_sequence/hs37d5.fa.gz

Adds a reference set used in the 1000 Genomes project using the name NCBI37, also setting the species to 9606
(human).

add-biosample

Adds a new biosample to the repository. The biosample argument is a JSON document according to the GA4GH
JSON schema.

usage: ga4gh_repo add-biosample [-h]
registryPath datasetName biosampleName
biosample

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

biosampleName the name of the biosample

biosample the JSON of the biosample

Examples:

$ ga4gh_repo add-biosample registry.db dataset1 HG00096 '{"individualId": "abc"}'

Adds the biosample named HG00096 to the repository with the individual ID “abc”.

add-individual

Adds a new individual to the repository. The individual argument is a JSON document following the GA4GH JSON
schema.

usage: ga4gh_repo add-individual [-h]
registryPath datasetName individualName
individual

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

individualName the name of the individual

1.5. Data repository 31

GA4GH Documentation, Release undefined

individual the JSON of the individual

Examples:

$ ga4gh_repo add-individual registry.db dataset1 HG00096 '{"description": "A
→˓description"}'

add-ontology

Adds a new ontology to the repository. The ontology supplied must be a text file in OBO format. If you wish to serve
sequence or variant annotations from a repository, a sequence ontology (SO) instance is required to translate ontology
term names held in annotations to ontology IDs. Sequence ontology definitions can be downloaded from the Sequence
Ontology site.

usage: ga4gh_repo add-ontology [-h] [-r] [-n NAME] registryPath filePath

Positional arguments:

registryPath the location of the registry database

filePath The path of the OBO file defining this ontology.

Options:

-r, --relativePath store relative path in database

-n, --name The name of the ontology

Examples:

$ ga4gh_repo add-ontology registry.db path/to/so-xp.obo

Adds the sequence ontology so-xp.obo to the repository using the default naming rules.

add-variantset

Adds a variant set to a named dataset in a repository. Variant sets are currently derived from one or more non-
overlapping VCF/BCF files which may be either stored locally or come from a remote URL. Multiple VCF files can
be specified either directly on the command line or by providing a single directory argument that contains indexed
VCF files. If remote URLs are used then index files in the local file system must be provided using the -I option.

usage: ga4gh_repo add-variantset [-h] [-r] [-I indexFiles [indexFiles ...]]
[-n NAME] [-R REFERENCESETNAME]
[-O ONTOLOGYNAME] [-A ATTRIBUTES] [-a]
registryPath datasetName dataFiles
[dataFiles ...]

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

dataFiles The VCF/BCF files representing the new VariantSet. These may be speci-
fied either one or more paths to local files or remote URLS, or as a path to
a local directory containing VCF files. Either a single directory argument
may be passed or a list of file paths/URLS, but not a mixture of directories
and paths.

32 Chapter 1. Contents

http://owlcollab.github.io/oboformat/doc/obo-syntax.html
https://github.com/The-Sequence-Ontology/SO-Ontologies
https://github.com/The-Sequence-Ontology/SO-Ontologies

GA4GH Documentation, Release undefined

Options:

-r, --relativePath store relative path in database

-I, --indexFiles The index files for the VCF/BCF files provided in the dataFiles argument.
These must be provided in the same order as the data files.

-n, --name The name of the VariantSet

-R, --referenceSetName the name of the reference set to associate with this VariantSet

-O, --ontologyName the name of the sequence ontology instance used to translate ontology term
names to IDs in this VariantSet

-A, --attributes additional attributes for the message expressed as JSON

-a, --addAnnotationSets If the supplied VCF file contains annotations, create the corresponding
VariantAnnotationSet.

Examples:

$ ga4gh_repo add-variantset registry.db 1kg 1kgPhase1/ -R NCBI37

Adds a new variant set to the dataset named 1kg in the repository defined by the registry database registry.db
using the VCF files contained in the directory 1kgPhase1. Note that this directory must also contain the correspond-
ing indexes for these files. We associate the reference set named NCBI37 with this new variant set. Because we do
not provide a --name argument, a name is automatically generated using the default name generation rules.

$ ga4gh_repo add-variantset registry.db 1kg \
1kgPhase1/chr1.vcf.gz 1kg/chr2.vcf.gz -n phase1-subset -R NCBI37

Like the last example, we add a new variant set to the dataset 1kg, but here we only use the VCFs for chromosomes
1 and 2. We also specify the name for this new variant set to be phase1-subset.

$ ga4gh_repo add-variantset registry.db 1kg \
--name phase1-subset-remote -R NCBI37 \
--indexFiles ALL.chr1.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz.

→˓tbi ALL.chr2.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz.tbi \
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20110521/ALL.chr1.phase1_

→˓release_v3.20101123.snps_indels_svs.genotypes.vcf.gz \
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20110521/ALL.chr2.phase1_

→˓release_v3.20101123.snps_indels_svs.genotypes.vcf.gz

This example performs the same task of creating a subset of the phase1 VCFs, but this time we use the remote URL
directly and do not keep a local copy of the VCF file. Because we are using remote URLs to define the variant set,
we have to download a local copy of the corresponding index files and provide them on the command line using the
--indexFiles option.

add-readgroupset

Adds a readgroup set to a named dataset in a repository. Readgroup sets are currently derived from a single indexed
BAM file, which can be either stored locally or based on a remote URL. If the readgroup set is based on a remote
URL, then the index file must be stored locally and specified using the --indexFile option.

Each readgroup set must be associated with the reference set that it is aligned to. The add-readgroupset com-
mand first examines the headers of the BAM file to see if it contains information about references, and then looks for
a reference set with name equal to the genome assembly identifer defined in the header. (Specifically, we read the
@SQ header line and use the value of the AS tag as the default reference set name.) If this reference set exists, then the
readgroup set will be associated with it automatically. If it does not (or we cannot find the appropriate information in

1.5. Data repository 33

GA4GH Documentation, Release undefined

the header), then the add-readgroupset command will fail. In this case, the user must provide the name of the
reference set using the --referenceSetName option.

usage: ga4gh_repo add-readgroupset [-h] [-n NAME] [-R REFERENCESETNAME]
[-A ATTRIBUTES] [-r] [-I INDEXFILE]
registryPath datasetName dataFile

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

dataFile The file path or URL of the BAM file for this ReadGroupSet

Options:

-n, --name The name of the ReadGroupSet

-R, --referenceSetName the name of the reference set to associate with this ReadGroupSet

-A, --attributes additional attributes for the message expressed as JSON

-r, --relativePath store relative path in database

-I, --indexFile The file path of the BAM index for this ReadGroupSet. If the dataFile
argument is a local file, this will be automatically inferred by appending
‘.bai’ to the file name. If the dataFile is a remote URL the path to a local
file containing the BAM index must be provided

Examples:

$ ga4gh_repo add-readgroupset registry.db 1kg \
path/to/HG00114.chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam

Adds a new readgroup set for an indexed 1000 Genomes BAM file stored on the local file system. The index file
follows the usual convention and is stored in the same directory as the BAM file and has an extra .bai extension. The
name of the readgroup set is automatically derived from the file name, and the reference set automatically set from the
BAM header.

$ ga4gh_repo add-readgroupset registry.db 1kg ga4gh-example-data/HG00096.bam \
-R GRCh37-subset -n HG0096-subset

Adds a new readgroup set based on a subset of the 1000 genomes reads for the HG00096 sample from the example
data used in the reference server. In this case we specify that the reference set name GRCh37-subset be associated
with the readgroup set. We also override the default name generation rules and specify the name HG00096-subset
for the new readgroup set.

$ ga4gh_repo add-readgroupset registry.db 1kg \
-n HG00114-remote
-I /path/to/HG00114.chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/phase3/data/HG00114/alignment/HG00114.

→˓chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam

Adds a new readgroups set based on a 1000 genomes BAM directly from the NCBI FTP server. Because this readgroup
set uses a remote FTP URL, we must specify the location of the .bai index file on the local file system.

34 Chapter 1. Contents

GA4GH Documentation, Release undefined

add-featureset

Adds a feature set to a named dataset in a repository. Feature sets must be in a ‘.db’ file. An appropriate ‘.db’ file can
be generate from a GFF3 file using scripts/generate_gff3_db.py.

usage: ga4gh_repo add-featureset [-h] [-A ATTRIBUTES] [-r]
[-R REFERENCESETNAME] [-O ONTOLOGYNAME]
[-C CLASSNAME]
registryPath datasetName filePath

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

filePath The path to the converted SQLite database containing Feature data

Options:

-A, --attributes additional attributes for the message expressed as JSON

-r, --relativePath store relative path in database

-R, --referenceSetName the name of the reference set to associate with this feature set

-O, --ontologyName the name of the sequence ontology instance used to translate ontology term
names to IDs in this feature set

-C, --className the name of the class used to fetch features in this feature set

Examples:

$ ga4gh_repo add-featureset registry.db 1KG gencode.db \
-R hg37 -O so-xp-simple

Adds the feature set gencode to the registry under the 1KG dataset. The flags set the reference genome to be hg37 and
the ontology to use to so-xp-simple.

add-continuousset

Adds a continuous set to a named dataset in a repository. Continuous sets must be in a bigWig file. The bigWig
format is described here: http://genome.ucsc.edu/goldenPath/help/bigWig.html. There are directions for converting
wiggle files to bigWig files on the page also. Files in the bedGraph format can be converted using bedGraphToBigWig
(https://www.encodeproject.org/software/bedgraphtobigwig/).

usage: ga4gh_repo add-continuousset [-h] [-r] [-R REFERENCESETNAME]
[-C CLASSNAME]
registryPath datasetName filePath

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

filePath The path to the file contianing the continuous data

Options:

-r, --relativePath store relative path in database

-R, --referenceSetName the name of the reference set to associate with this continuous set

1.5. Data repository 35

http://genome.ucsc.edu/goldenPath/help/bigWig.html
https://www.encodeproject.org/software/bedgraphtobigwig/

GA4GH Documentation, Release undefined

-C, --className the name of the class used to fetch features in this continuous set

Examples:

$ ga4gh_repo add-continuousset registry.db 1KG continuous.bw \
-R hg37

Adds the continuous set continuous to the registry under the 1KG dataset. The flags set the reference genome to be
hg37.

init-rnaquantificationset

Initializes a rnaquantification set.

usage: ga4gh_repo init-rnaquantificationset [-h] registryPath filePath

Positional arguments:

registryPath the location of the registry database

filePath The path to the resulting Quantification Set

Examples:

$ ga4gh_repo init-rnaquantificationset repo.db rnaseq.db

Initializes the RNA Quantification Set with the filename rnaseq.db.

add-rnaquantification

Adds a rnaquantification to a RNA quantification set.

RNA quantification formats supported are currently kallisto and RSEM.

usage: ga4gh_repo add-rnaquantification [-h] [--biosampleName BIOSAMPLENAME]
[--readGroupSetName READGROUPSETNAME]
[--featureSetNames FEATURESETNAMES]
[-n NAME] [-d DESCRIPTION] [-t]
[-A ATTRIBUTES]
filePath quantificationFilePath format
registryPath datasetName

Positional arguments:

filePath The path to the RNA SQLite database to create or modify

quantificationFilePath The path to the expression file.

format format of the quantification input data

registryPath the location of the registry database

datasetName the name of the dataset

Options:

--biosampleName Biosample Name

--readGroupSetName Read Group Set Name

--featureSetNames Comma separated list

36 Chapter 1. Contents

GA4GH Documentation, Release undefined

-n, --name The name of the rna quantification

-d, --description The human-readable description of the RnaQuantification.

-t, --transcript sets the quantification type to transcript

-A, --attributes additional attributes for the message expressed as JSON

Examples:

$ ga4gh_repo add-rnaquantification rnaseq.db data.tsv \
kallisto ga4gh-example-data/registry.db brca1 \
--biosampleName HG00096 --featureSetNames gencodev19
--readGroupSetName HG00096rna --transcript

Adds the data.tsv in kallisto format to the rnaseq.db quantification set with optional fields for associating a quantifica-
tion with a Feature Set, Read Group Set, and Biosample.

add-rnaquantificationset

When the desired RNA quantification have been added to the set, use this command to add them to the registry.

usage: ga4gh_repo add-rnaquantificationset [-h] [-R REFERENCESETNAME]
[-n NAME] [-A ATTRIBUTES]
registryPath datasetName filePath

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

filePath The path to the converted SQLite database containing RNA data

Options:

-R, --referenceSetName the name of the reference set to associate with this RnaQuantification-
Set

-n, --name The name of the RnaQuantificationSet

-A, --attributes additional attributes for the message expressed as JSON

Examples:

$ ga4gh_repo add-rnaquantificationset registry.db brca1 rnaseq.db \
-R hg37 -n rnaseq

Adds the RNA quantification set rnaseq.db to the registry under the brca1 dataset. The flags set the reference genome
to be hg37 and the name of the set to rnaseq.

add-phenotypeassociationset

Adds an rdf object store. The cancer genome database Clinical Genomics Knowledge Base http://nif-crawler.neuinfo.
org/monarch/ttl/cgd.ttl, published by the Monarch project, is the supported format for Evidence.

usage: ga4gh_repo add-phenotypeassociationset [-h] [-n NAME] [-A ATTRIBUTES]
registryPath datasetName dirPath

Positional arguments:

1.5. Data repository 37

http://nif-crawler.neuinfo.org/monarch/ttl/cgd.ttl
http://nif-crawler.neuinfo.org/monarch/ttl/cgd.ttl

GA4GH Documentation, Release undefined

registryPath the location of the registry database

datasetName the name of the dataset

dirPath The path of the directory containing ttl files.

Options:

-n, --name The name of the PhenotypeAssociationSet

-A, --attributes additional attributes for the message expressed as JSON

Examples:

$ ga4gh_repo add-phenotypeassociationset registry.db dataset1 /monarch/ttl/cgd.ttl -n
→˓cgd

remove-dataset

Removes a dataset from the repository and recursively removes all objects (ReadGroupSets, VariantSets, etc) within
this dataset.

usage: ga4gh_repo remove-dataset [-h] [-f] registryPath datasetName

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-dataset registry.db dataset1

Deletes the dataset with name dataset1 from the repository represented by registry.db

remove-referenceset

Removes a reference set from the repository. Attempting to remove a reference set that is referenced by other objects
in the repository will result in an error.

usage: ga4gh_repo remove-referenceset [-h] [-f] registryPath referenceSetName

Positional arguments:

registryPath the location of the registry database

referenceSetName the name of the reference set

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-referenceset registry.db NCBI37

Deletes the reference set with name NCBI37 from the repository represented by registry.db

38 Chapter 1. Contents

GA4GH Documentation, Release undefined

remove-biosample

Removes a biosample from the repository.

usage: ga4gh_repo remove-biosample [-h] [-f]
registryPath datasetName biosampleName

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

biosampleName the name of the biosample

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-biosample registry.db dataset1 HG00096

Deletes the biosample with name HG00096 in the dataset dataset1 from the repository represented by
registry.db

remove-individual

Removes an individual from the repository.

usage: ga4gh_repo remove-individual [-h] [-f]
registryPath datasetName individualName

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

individualName the name of the individual

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-individual registry.db dataset1 HG00096

Deletes the individual with name HG00096 in the dataset dataset1 from the repository represented by
registry.db

remove-ontology

Removes an ontology from the repository. Attempting to remove an ontology that is referenced by other objects in the
repository will result in an error.

usage: ga4gh_repo remove-ontology [-h] [-f] registryPath ontologyName

Positional arguments:

1.5. Data repository 39

GA4GH Documentation, Release undefined

registryPath the location of the registry database

ontologyName the name of the ontology

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-ontology registry.db so-xp

Deletes the ontology with name so-xp from the repository represented by registry.db

remove-variantset

Removes a variant set from the repository. This also deletes all associated call sets and variant annotation sets from
the repository.

usage: ga4gh_repo remove-variantset [-h] [-f]
registryPath datasetName variantSetName

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

variantSetName the name of the variant set

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-variantset registry.db dataset1 phase3-release

Deletes the variant set named phase3-release from the dataset named dataset1 from the repository repre-
sented by registry.db.

remove-readgroupset

Removes a read group set from the repository.

usage: ga4gh_repo remove-readgroupset [-h] [-f]
registryPath datasetName
readGroupSetName

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

readGroupSetName the name of the read group set

Options:

-f, --force do not prompt for confirmation

Examples:

40 Chapter 1. Contents

GA4GH Documentation, Release undefined

$ ga4gh_repo remove-readgroupset registry.db dataset1 HG00114

Deletes the readgroup set named HG00114 from the dataset named dataset1 from the repository represented by
registry.db.

remove-featureset

Removes a feature set from the repository.

usage: ga4gh_repo remove-featureset [-h] [-f]
registryPath datasetName featureSetName

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

featureSetName the name of the feature set

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-featureset registry.db 1KG gencode-genes

Deletes the feature set named gencode-genes from the dataset named 1KG from the repository represented by
registry.db.

remove-continuousset

Removes a continuous set from the repository.

usage: ga4gh_repo remove-continuousset [-h] [-f]
registryPath datasetName
continuousSetName

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

continuousSetName the name of the continuous set

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-continuousset registry.db 1KG continuous

Deletes the feature set named continuous from the dataset named 1KG from the repository represented by
registry.db.

1.5. Data repository 41

GA4GH Documentation, Release undefined

remove-rnaquantificationset

Removes a rna quantification set from the repository.

usage: ga4gh_repo remove-rnaquantificationset [-h] [-f]
registryPath datasetName
rnaQuantificationSetName

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

rnaQuantificationSetName the name of the RNA Quantification Set

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-rnaquantificationset registry.db dataset1 ENCFF305LZB

Deletes the rnaquantification set named ENCFF305LZB from the dataset named dataset1 from the repository
represented by registry.db.

remove-phenotypeassociationset

Removes an rdf object store.

usage: ga4gh_repo remove-phenotypeassociationset [-h] [-f]
registryPath datasetName name

Positional arguments:

registryPath the location of the registry database

datasetName the name of the dataset

name The name of the phenotype association set

Options:

-f, --force do not prompt for confirmation

Examples:

$ ga4gh_repo remove-phenotypeassociationset registry.db dataset1 cgd

Development

Thanks for your interest in helping us develop the GA4GH reference implementation! There are lots of ways to
contribute, and it’s easy to get up and running. This page should provide the basic information required to get started;
if you encounter any difficulties please let us know

42 Chapter 1. Contents

https://github.com/ga4gh/ga4gh-server/issues

GA4GH Documentation, Release undefined

Warning: This guide is a work in progress, and is incomplete.

Development environment

We need a development Python 2.7 installation, Git, and some basic libraries. On Debian or Ubuntu, we can install
these using

sudo apt-get install python-dev git zlib1g-dev libxslt1-dev libffi-dev libssl-dev
→˓curl libcurl4-openssl-dev

Note: Instructions for configuring the reference server on Mac OS X can be found here Installation.

If you don’t have admin access to your machine, please contact your system administrator, and ask them to install the
development version of Python 2.7 and the development headers for zlib.

You will also need to install Protocol Buffers 3.0 in your development environment. The general process for doing the
install is best described in the protobuf documentation here: https://github.com/google/protobuf If you are working on
Mac OS X then there is an easy install process through homebrew:

brew update && brew install --devel protobuf

Once these basic prerequisites are in place, we can then bootstrap our local Python installation so that we have all of
the packages we require and we can keep them up to date. Because we use the functionality of the recent versions of
pip and other tools, it is important to use our own version of it and not any older versions that may be already on the
system.

wget https://bootstrap.pypa.io/get-pip.py
python get-pip.py --user

This creates a user specific site-packages installation for Python, which is based in your ~/.local directory. This
means that you can now install any Python packages you like without needing to either bother your sysadmin or worry
about breaking your system Python installation. To use this, you need to add the newly installed version of pip to
your PATH. This can be done by adding something like

export PATH=$HOME/.local/bin:$PATH

to your ~/.bashrc file. (This will be slightly different if you use another shell like csh or zsh.)

We then need to activate this configuration by logging out, and logging back in. Then, test this by running:

pip --version
#pip 6.0.8 from /home/username/.local/lib/python2.7/site-packages (python 2.7)

From here, we suggest using virtualenv to manage your python environments. You can install and activate a virtual
environment using:

pip install virtualenv
virtualenv env
source env/bin/activate

1.6. Development 43

http://www.zlib.net/
https://github.com/google/protobuf
https://www.python.org/dev/peps/pep-0370/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

GA4GH Documentation, Release undefined

Using Development Constraints

The server uses the GA4GH schemas as a basis for serializing and deserializing data. This means that the server
depends on the schemas, and at times a developer will need to point at a specific version of the schemas to reflect a
change to the data model.

There is a constraints.txt file in the root of the source tree that can be used to pin specific dependencies for a
given requirement. For example, to use a specific branch of the schemas when developing the server hosted by github
we can add the line:

git+git://github.com/david4096/schemas.git@protobuf31#egg=ga4gh_schemas

This informs the installer to resolve dependencies from github before PyPi, allowing the developer to work against a
specific version of the schemas under their control.

By explicitly stating a dependency, others can review changes to the data model. When a change has been accepted in
the schemas, you can adjust your constraints to point at the current master branch of schemas.

git+git://github.com/ga4gh/schemas.git@master#egg=ga4gh_schemas

At the time of a release, the same process allows us to specify a precise released version of the schemas and client to
develop against.

GitHub workflow

First, go to https://github.com/ga4gh/ga4gh-server and click on the ‘Fork’ button in the top right-hand corner. This will
allow you to create your own private fork of the server project where you can work. See the GitHub documentation
for help on forking repositories. Once you have created your own fork on GitHub, you’ll need to clone a local copy of
this repo. This might look something like:

git clone git@github.com:username/server.git

We can then install all of the packages that we need for developing the GA4GH reference server:

cd server
virtualenv env
source env/bin/activate
pip install -r dev-requirements.txt -c constraints.txt

This will take a little time as the libraries that we require are fetched from PyPI and built. You can now start the
server using a python server_dev.py, or by installing it to the current environment using python setup.
py install and then running ga4gh_server. For more information on using the server, visit GA4GH API
Demo.

It is also important to set up an upstream remote for your repo so that you can sync up with the changes that other
people are making:

git remote add upstream https://github.com/ga4gh/ga4gh-server.git

All development is done against the master branch.

All development should be done in a topic branch. That is, a branch that the developer creates him or herself. These
steps will create a topic branch (replace TOPIC_BRANCH_NAME appropriately):

git fetch --all
git checkout master

44 Chapter 1. Contents

https://github.com/ga4gh/ga4gh-server
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/configuring-a-remote-for-a-fork/

GA4GH Documentation, Release undefined

git merge --ff-only upstream/master
git checkout -b TOPIC_BRANCH_NAME

Topic branch names should include the issue number (if there is a tracked issue this change is addressing) and provide
some hint as to what the changes include. For instance, a branch that addresses the (imaginary) tracked issue with
issue number #123 to add more widgets to the code might be named 123_more_widgets.

At this point, you are ready to start adding, editing and deleting files. Stage changes with git add. Afterwards,
checkpoint your progress by making commits:

git commit -m 'Awesome changes'

(You can also pass the --amend flag to git commit if you want to incorporate staged changes into the most recent
commit.)

Once you have changes that you want to share with others, push your topic branch to GitHub:

git push origin TOPIC_BRANCH_NAME

Then create a pull request using the GitHub interface. This pull request should be against the master branch (this
should happen automatically).

At this point, other developers will weigh in on your changes and will likely suggest modifications before the change
can be merged into master. When you get around to incorporating these suggestions, it is likely that more commits
will have been added to the master branch. Since you (almost) always want to be developing off of the latest version
of the code, you need to perform a rebase to incorporate the most recent changes from master into your branch.

Warning: We recommend against using git pull. Use git fetch and git rebase to update your topic
branch against mainline branches instead. See the Git Workflow Appendix for elaboration.

git fetch --all
git checkout master
git merge --ff-only upstream/master
git checkout TOPIC_BRANCH_NAME
git rebase master

At this point, several things could happen. In the best case, the rebase will complete without problems and you can con-
tinue developing. In other cases, the rebase will stop midway and report a merge conflict. That is, git has determined
that it is impossible for it to determine how to combine the changes from the new commits in the master branch and
your changes in your topic branch and needs manual intervention to proceed. GitHub has some documentation on how
to resolve rebase merge conflicts.

Once you have updated your branch to the point where you think that you want to re-submit the code for other
developers to consider, push the branch again, this time using the force flag:

git push --force origin TOPIC_BRANCH_NAME

If you had tried to push the topic branch without using the force flag, it would have failed. This is because non-force
pushes only succeed when you are only adding new commits to the tip of the existing remote branch. When you want
to do something other than that, such as insert commits in the middle of the branch history (what git rebase does),
or modify a commit (what git commit --amend does) you need to blow away the remote version of your branch
and replace it with the local version. This is exactly what a force push does.

1.6. Development 45

https://help.github.com/articles/resolving-merge-conflicts-after-a-git-rebase/

GA4GH Documentation, Release undefined

Warning: Never use the force flag to push to the upstream repository. Never use the force flag to push to
the master. Only use the force flag on your repository and on your topic branches. Otherwise you run the risk
of screwing up the mainline branches, which will require manual intervention by a senior developer and manual
changes by every downstream developer. That is a recoverable situation, but also one that we would rather avoid.
(Note: a hint that this has happened is that one of the above listed merge commands that uses the --ff-only
flag to merge a remote mainline branch into a local mainline branch fails.)

Once your pull request has been merged into master, you can close the pull request and delete the remote branch in
the GitHub interface. Locally, run this command to delete the topic branch:

git branch -D TOPIC_BRANCH_NAME

Only the tip of the iceberg of git and GitHub has been covered in this section, and much more can be learned by
browsing their documentation. For instance, get help on the git commit command by running:

git help commit

To master git, we recommend reading this free book (save chapter four, which is about git server configuration): Pro
Git.

Contributing

See the files CONTRIBUTING.md and STYLE.md for an overview of the processes for contributing code and the
style guidelines that we use.

Development utilities

All of the command line interface utilities have local scripts that simplify development. To run the server locally in
development mode, we can use the server_dev.py script, e.g.:

python server_dev.py

will run a server using the default configuration. This default configuration expects a data hierarchy to exist in the
ga4gh-example-data directory. This default configuration can be changed by providing a (fully qualified) path
to a configuration file (see the Configuration section for details).

There is also an OpenID Connect (oidc) provider you can run locally for development and testing. It resides in /
oidc-provider and has a run.sh file that creates a virtualenv, installs the necessary packages, and runs the server.
Configuration files can be found in /oidc-provider/simple_op:

cd oidc-provider
./run.sh

The provider expects OIDC redirect URIs to be over HTTPS, so if the ga4gh server is started with OIDC enabled, it
defaults to HTTPS. You can run the server against this using:

python server_dev.py -c LocalOidConfig

For tips on how to profile the performance of the server see ref_server_profiling

46 Chapter 1. Contents

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2

GA4GH Documentation, Release undefined

Organization

The code for the project is held in the ga4gh package, which corresponds to the ga4gh directory in the project root.
Within this package, the functionality is split between the client, server, protocol and cli modules. The
cli module contains the definitions for the ga4gh_client and ga4gh_server programs.

Git Workflow Appendix

Don’t use git pull

We recommend against using git pull. The git pull command by default combines the git fetch and the
git merge command. If your local branch has diverged from its remote tracking branch, running git pull will
create a merge commit locally to join the two branches.

In some workflows, this is not an issue. For us, however, it creates a problem in the future. When you are ready to
submit your topic branch in a pull request, we ask you to squash your commits (usually down to one commit). Given
the complex graph topography created by all of the merges, the order in which git applies commits in the squash is
very difficult to reason about and will likely create merge conflicts that you find unnecessary and nonsensical (and
therefore, highly aggravating!).

We instead recommend using git fetch and git rebase to update your local topic branch against a mainline
branch. This will create a linear commit history in your topic branch, which will be easy to squash, since the commits
are applied in the squash in the order that you made them.

git pull does have the --rebase option which will do a rebase instead of a merge to incorporate the remote
branch. One can also set the branch.autosetuprebase always config option to have git pull do a rebase
by default (i.e. without passing the --rebase flag) instead of a merge. This will avoid the issue of squashing a non-
linear commit history.

So, in truth, we are really recommending against squashing local branches with many merge commits in them. How-
ever, using the default settings for git pull is the easiest way to end up in this situation. Therefore, don’t use git
pull unless you know what you are doing.

Squash, then rebase

When updating a local topic branch with changes from a mainline branch, we recommend squashing commits in your
topic branch down to one commit before rebasing on top of the mainline branch. The reason for this is that, under
the hood, to apply the rebase git rebase essentially cherry-picks each commit from your topic branch not in the
mainline branch and applies it to the mainline branch. Each one of these applications can cause a merge conflict. It is
much better to face the potential of only one merge conflict than N merge conflicts (where N is the number of unique
commits in the local branch)!

The difficulty of proceeding the opposite way (rebasing, then squashing) is only compounded because of the unintu-
itiveness of the N merge conflicts. When presented with a merge conflict, your likely intuition is to put the file in the
state that you think it ought to be in, namely the condition it was in after the Nth commit. However, if that state was
different than the state that git thinks it should be in – namely, the state of the file at commit X where X<N – then you
have only created the potential for more merge conflicts. When the next intermediate commit, Y (where X<Y<N) is
applied, it too will create a merge conflict. And so on.

So squash, then rebase, and avoid this whole dilemma. The terms are a bit confusing since both “squashing” and
“rebasing” are accomplished via the git rebase command. As mentioned above, squash the commits in your topic
branch with (assuming you have branched off of the master mainline branch):

git rebase -i `git merge-base master HEAD`

1.6. Development 47

GA4GH Documentation, Release undefined

(git merge-base master HEAD specifies the most recent commit that both master and your topic branch
share in common. Normally this is equivalent to the most recent commit of master, but that’s not guaranteed – for
instance, if you have updated your local master branch with additional commits from the remote master since you
created your topic branch which branched off of the local master.)

And rebase with (again, assuming master as the mainline branch):

git rebase master

GitHub’s broken merge/CI model

GitHub supports continuous integration (CI) via Travis CI. On every pull request, Travis runs a suite of tests to
determine if the PR is safe to merge into the mainline branch that it targets. Unfortunately, the way that GitHub’s
merge model is structured does not guarantee this property. That is, it is possible for a PR to pass the Travis tests but
for the mainline branch to fail them after that PR is merged.

How can this happen? Let’s illustrate by example: suppose PR A and PR B both branch off of commit M, which is the
most recent commit in the mainline branch. A and B both pass CI, so it appears that it is safe to merge them into the
mainline branch. However, it is also true that the changes in A and B have never been tested together until CI is run
on the mainline branch after both have been merged. If PR A and B have incompatible changes, even if both merge
cleanly, CI will fail in the mainline branch.

GitHub could solve this issue by not allowing a PR to be merged unless it both passed CI and its branch contained (in
addition to the commits it wanted to merge in to mainline) every commit in the mainline branch. That is, no PR could
be merged into mainline unless its commits were tested with every commit already in mainline. Right now GitHub
does not mandate this strict sequencing of commits, which is why it can never guarantee that the mainline CI will pass,
even if all the PR CIs passed.

Developers could also enforce this property manually, but we have determined that not using GitHub’s UI merging
features and judiciously re-submitting PRs for additional CI would be more effort than fixing a broken test in a mainline
branch once in a while.

GitHub has recently introduced Protected Branches, which fixes this issue by mandating a strict sequencing of commits
as described above. We have protected all of our trunk branches. The downside of using protected branches is increased
developer overhead for each branch: merging PR A targeting trunk branch T immediately makes PR B targeting T out
of date and therefore unmergable without pulling in the most recent changes from T and re-running CI on B. However,
we think it is worth enabling this feature to prevent broken trunk branches.

Managing long-running branches

Normally, the development process concerns two branches: the feature branch that one is developing in and the trunk
branch that one submits a pull request against (usually this is master). Sometimes, development of a major feature
may require a branch that lives on for a long time before being incorporated into a trunk branch. This branch we call
a topic branch.

For developers, the process of submitting code to a topic branch is almost identical to submitting code to a trunk
branch. The only difference is that the pull request is made against the topic branch instead of the trunk branch (this is
specified in the GitHub pull request UI).

Topic branches do, however, require more management. Each long-lived topic branch will be assigned a branch
manager. This person is responsible for keeping the branch reasonably up to date with changes that happen in the
trunk branch off of which it is branched. The list of long running branches and their corresponding branch managers
can be found here.

It is up to the branch manager how frequently the topic branch pulls in changes from the trunk branch. All topic
branches are hosted on the ga4gh/ga4gh-server repository and are GitHub protected branches. That is, there can be

48 Chapter 1. Contents

https://travis-ci.com/
https://help.github.com/articles/about-protected-branches/
https://github.com/ga4gh/ga4gh-server/wiki/Long-running-topic-branches-and-branch-managers

GA4GH Documentation, Release undefined

no force pushes to the branches, so they must be updated using git merge rather than git rebase. Updates to
topic branches must be done via pull requests (rather than directly on the command line) so that the Travis CI runs and
passes prior to merging.

Release process

There are two types of releases: development releases, and stable bugfix releases. Development releases happen as
a matter of course while we are working on a given minor version series, and may be either a result of some new
features being ready for use or a minor bugfix. Stable bugfix releases occur when mainline development has moved
on to another minor version, and a bugfix is required for the currently released version. These two cases are handled
in different ways.

Development releases

Version numbers are MAJOR.MINOR.PATCH triples. Minor version increments happen when significant changes
are required to the server codebase, which will result in a significant departure from the previously released version,
either in code layout or in functionality. During the normal process of development within a minor version series,
patch updates are routinely and regularly released. (In some cases bugfix releases can also come with a suffix, e.g.
0.6.0a9.post1.)

Making a release entails the following steps:

1. Create a PR against master that has the following changes:

(a) update the release notes in docs/status.rst with a description of what is in the release

(b) modify requirements.txt to pin the ga4gh packages to specific versions

(c) modify constraints.txt to comment out all the lines referencing ga4gh packages

(d) modify docs/environment.yml to pin the ga4gh packages to specific versions

2. Once this has been merged, tag the release on GitHub (on the releases page) with the appropriate version number.

3. Fetch the tag from the upstream repo, and checkout this tag.

4. Create the distribution tarball using python setup.py sdist, and then upload the resulting tarball to
PyPI using twine upload dist/ga4gh-$MAJOR.$MINOR.$PATCH.tar.gz (using the correct file
name).

5. Verify that the documentation at http://ga4gh-server.readthedocs.org/en/stable/ is for the correct version (it may
take a few minutes for this to happen after the release has been tagged on GitHub). The release notes docs
should have changed, so that is a good section to look at to confirm the change.

All of the above steps after the tag is dropped on the target commit are now automated using Travis’ capability to
deploy to Pypi.

Stable bugfix release

When a minor version series has ended because of some significant shift in the server internals, there will be a period
when the master branch is not in a releasable state. If a bugfix release is required during this period, we create a
release using the following process:

1. If it does not already exist, create a release branch called release-$MAJOR.$MINOR from the tag of the last
release.

2. Fix the bug by either cherry picking the relevant commits from master, or creating PRs against the
release-$MAJOR.$MINOR branch if the bug does not apply to master.

1.6. Development 49

https://github.com/ga4gh/ga4gh-server/releases
http://ga4gh-server.readthedocs.org/en/stable/
https://docs.travis-ci.com/user/deployment/pypi/

GA4GH Documentation, Release undefined

3. Follow steps 1-5 in the process for Development releases above, except using the release-$MAJOR.$MINOR
branch as the base instead of master.

Status

The GA4GH server is currently under active development, and several features are not yet fully functional. These
mostly involve the reads API. Some missing features are:

• Unmapped reads. We do not support searching for unmapped reads.

• Searching over multiple ReadGroups in different ReadGroupSets.

For more detail on individual development issues, please see the project’s issue page.

Release Notes

0.3.6

This an alpha pre-release that contains some major updates. The most important changes are highlighted in bold
below. We have also made some updates to the documentation.

Features:

• Rename package from “ga4gh” to “ga4gh-server” #1582, #1583

• Added support for BigWig files in a new Continuous Data object #1573 New endpoints and message types
include:

• POST /continuoussets/search

• GET /continuoussets/{id}

• POST /continuous/search

• Continuous (new)

• ContinuousSet (new)

• Add ability to list and join peer server networks #1507 New endpoints and message types include:

• POST /peers/list

• POST /peers/announce

• GET /info

• ListPeersResponse (new)

• Peer (new)

• AnnouncePeerResponse (new)

• GetInfoResponse (new)

• Remove feature_id from ExpressionLevel and add ability to search by the Name field #1580 Impacts

• POST /expressionlevels/search

• GET /expressionlevels/{id}

• Replaced info fields with rich type Attributes fields #1521 Impacts the following message types:

• TranscriptEffect

50 Chapter 1. Contents

https://github.com/ga4gh/ga4gh-server/issues
https://github.com/ga4gh/ga4gh-server/issues/1582
https://github.com/ga4gh/ga4gh-server/issues/1583
https://github.com/ga4gh/ga4gh-server/issues/1573
https://github.com/ga4gh/ga4gh-server/issues/1507
https://github.com/ga4gh/ga4gh-server/issues/1580
https://github.com/ga4gh/ga4gh-server/issues/1521

GA4GH Documentation, Release undefined

• VariantAnnotation

• Individual

• Biosample

• Experiment (new)

• Analysis (new)

• Dataset

• ReadGroup

• ReadGroupSet

• ReadAlignment

• Reference

• ReferenceSet

• RnaQuantificationSet

• RnaQuantification

• ExpressionLevel

• Feature

• VariantSetMetadata

• CallSet

• Call

• Variant

• Replace NCBI taxon ID integer with ontology term #1551 Impacts the following message types:

• Reference

• ReferenceSet

• Changed ontology term “id” to “term_id” #1513 Impacts the following message types:

• OntologyTerm

Documentation:

• Document auto-releases, constraint instructions #1578

• Improved development document for virtualenv command #1550

Infrastructure:

• Automatically deploy tagged releases to Pypi from Travis #1576

• Refactor transcript annotation #1334

• Speedups to rna quantification ingest #1564

0.3.5

Alpha pre-release supporting minor update. We have done some restructuring, some bug fixes and some minor protocol
updates in this release.

1.7. Status 51

https://github.com/ga4gh/ga4gh-server/issues/1551
https://github.com/ga4gh/ga4gh-server/issues/1513
https://github.com/ga4gh/ga4gh-server/issues/1578
https://github.com/ga4gh/ga4gh-server/issues/1550
https://github.com/ga4gh/ga4gh-server/issues/1576
https://github.com/ga4gh/ga4gh-server/issues/1334
https://github.com/ga4gh/ga4gh-server/issues/1564

GA4GH Documentation, Release undefined

• Restructuring: We have reorganized our codebase to separate out the schemas, client, and server compo-
nents as separately installable Python components. Running ‘pip install ga4gh –pre’ will still automatically
install all required packages. But now developers who wish to leverage the Python libraries around the
schemas can just use ‘pip install ga4gh-schemas’, and developers of client code can gain access to the
client API library my just running ‘pip install ga4gh-client’.

• Bug fixes and improvements

– Fix to be able to handle VCFs with genotype == ‘./.’ (server #1389)

– Fixed bug with OIDC Authentication (server #1452, #1508)

– Repo manager list out of range error (server #1472)

– G2P features search was returning a 404, this has been fixed (server #1379)

– Sped up readGroupSet generator (server #1316)

– Enhanced ENCODE RNA downloader

– Added support for Auth0 (server #1452)

– Refactored usage of the term ‘biosample’ to be consistent (server #1394)

– Moved to Protobuf version 3.1 (server #1471)

• Documentation updates

– Github usage

– Added sections for new Python packages: client and schemas

– Split out repository manager docs

– Docker file documentation updated

– Updated the Configuration section to document the Auth0 settings

0.3.4

Alpha pre-release supporting major feature update.

• G2P functionality added to support the following API endpoints:

– POST /phenotypeassociationsets/search

– POST /phenotypes/search

– POST /featurephenotypeassociations/search

• Biometadata tags for RNA quantifications.

• Improvements to the RNA quantification ingestion pipeline.

• Migrated CLI related code to cli module.

• Add demonstration RNA quantification data.

• Minor doc fixes

Known Issues

• When searching using a wildcard, *, an Internal Server Error occurs. #1379

• When listing many Read Group Sets, responses can be quite slow causing timeouts. #1316

52 Chapter 1. Contents

GA4GH Documentation, Release undefined

0.3.3

Alpha pre-release supporting major feature update.

• RNA functionality added to support the following API endpoints:

– POST /rnaquantificationsets/search

– GET /rnaquantificationsets/{id}

– POST /rnaquantifications/search

– GET /rnaquantifications/{id}

– POST /expressionlevels/search

– GET /expressionlevels/{id}

• Fixed bug where transcript effects would be repeated within a search result.

0.3.2

Alpha pre-release supporting major feature update.

• Metadata functionality added to support biosample and individual metadata capabilities.

• Now support searching features by ‘name’ and ‘gene_symbol’. These fields have been promoted to facilitate the
future integration of the RNA and G2P modules.

0.3.1

Alpha pre-release supporting major feature update. This release is not backwards compatible with previous releases
due to several changes to the schemas that were required to move to protocol buffers.

• This release includes the code changes necessary for the migration to protocol buffers from Avro.

• Client applications will need to be rebuilt to the new schemas and use the protobuf json serialization libraries to
be compatible with this version of the server.

0.3.0

Alpha pre-release supporting major feature update. This release is not backwards compatible with previous releases,
and requires the data files be re-imported.

• File locations are now tracked in a registry.db registry such that the files can be located anywhere. The informa-
tion from the json sidecar files are also included in the database.

• Ontology terms are now imported via an OBO file instead of the old pre-packaged sequence_ontology.txt file.
A sample OBO file has been added to the sample data set for the reference server.

• Added a custom landing page option for the main page of the server.

• Performance improvement for variant search when calls are set to an empty string.

• Improved server configuration including Apache configuration and robots.txt file.

1.7. Status 53

GA4GH Documentation, Release undefined

0.2.2

Alpha pre-release supporting major feature update. This release is backwards incompatible with previous releases,
and requires a revised data directory layout.

• Added sequence and variant annotations (which introduces a sqlite database component)

• Added repo manager, a command line tool to manage data files and import them into the server’s data repository

• Supported searching over multiple ReadGroups, so long as they are all in the same ReadGroupSet and all of the
ReadGroups in the ReadGroupSet are specified

0.2.1

Bugfix release that fixes a problem introduced by upstream package changes

0.2.0

Alpha pre-release supporting major schema update. This release is backwards incompatible with previous releases,
and requires a revised data directory layout.

• Schema version changed from v0.5 to v0.6.0a1

• Various backwards incompatible changes to the data directory layout

• Almost complete support for the API.

• Numerous code layout changes.

0.1.2

This bugfix release addresses the following issues:

• #455: bugs in reads/search call (pysam calls not sanitized, wrong number of arguments to getReadAlignments)

• #433: bugs in paging code for reads and variants

0.1.1

• Fixes dense variants not being correctly handled by the server (#391)

• Removes unused paths (thus they won’t confusingly show up in the HTML display at /)

0.1.0

Just bumping the version number to 0.1.0.

0.1.0b1

This is a beta pre-release of the GA4GH reference implementation. It includes

• A fully functional client API;

• A set of client side tools for interacting with any conformant server;

• A partial implementation of the server API, providing supports for variants and reads from native file formats.

54 Chapter 1. Contents

GA4GH Documentation, Release undefined

0.1.0a2

This is an early alpha release to allow us to test the PyPI package and the README. This is not intended for general
use.

1.7. Status 55

	Contents
	Introduction
	GA4GH API Demo
	Installation
	Configuration
	Data repository
	Development
	Status

