

    
      
          
            
  [image: _images/logo_ga.png]

GA4GH Reference Implementation

This the documentation for version undefined of the GA4GH reference
implementation.


Contents



	Introduction

	GA4GH API Demo
	Host the 1000 Genomes VCF

	Use the client package

	OIDC Demonstration





	Installation
	Deployment on Apache

	Deployment on Docker

	Installing the development version on Mac OS X





	Configuration
	Configuration file

	Configuring Auth0 Service

	OpenID Connect Providers





	Data repository
	Command Line





	Development
	Development environment

	Using Development Constraints

	GitHub workflow

	Contributing

	Development utilities

	Organization

	Git Workflow Appendix

	Release process





	Status
	Release Notes















          

      

      

    

  

    
      
          
            
  
Introduction

The Data Working Group [http://ga4gh.org/#/] of the
Global Alliance for Genomics and Health [http://genomicsandhealth.org/]
has defined an
API [https://ga4gh-schemas.readthedocs.org/en/latest/]
to facilitate interoperable exchange of genomic data.
This is the the documentation for the reference implementation of the API.


	Simplicity/clarity

	The main goal of this implementation is to provide an easy to understand
and maintain implementation of the GA4GH API. Design choices
are driven by the goal of making the code as easy to understand as
possible, with performance being of secondary importance. With that
being said, it should be possible to provide a functional implementation
that is useful in many cases where the extremes of scale are not
important.



	Portability

	The code is written in Python for maximum portability, and it
should be possible to run on any modern computer/operating system (Windows
compatibility should be possible, although this has not been tested). Our coding
guidelines specify using a subset of Python 3 which is backwards compatible with Python 2
following the current best practices [http://python-future.org/compatible_idioms.html].
The project currently does not yet support Python 3, as support for it is lacking in several
packages that we depend on. However, our eventual goal is to support both Python 2
and 3.



	Ease of use

	The code follows the Python Packaging User Guide [http://python-packaging-user-guide.readthedocs.org/en/latest/].
Specifically, pip is used to handle python package dependencies (see below
for details). This provides easy installation of the ga4gh reference code
across a range of operating systems.









          

      

      

    

  

    
      
          
            
  
GA4GH API Demo

In this demo, we’ll install a copy of the GA4GH reference
implementation and run a local version of the server using some example
data. We then run some example queries on this server using various
different methods to illustrate the basics of the protocol.
The server can, of course, be run on any machine on the network,
but for simplicity we assume that the client and the server are running
on your local machine during this demo.

The instructions for installation here
are not intended to be used in a production deployment. See
the Installation section for a detailed guide on production installation.
To run the demo, you will need a working installation of
Python 2.7 [https://www.python.org/download/releases/2.7/]
and also have virtualenv [https://virtualenv.pypa.io/en/latest/]
installed. We also need to have zlib [http://www.zlib.net/] and
a few other common libraries installed so that we can build some of the
packages that the reference server depends on.

On Debian/Ubuntu, for example, we can install these
packages using:

$ sudo apt-get install python-dev python-virtualenv zlib1g-dev libxslt1-dev libffi-dev libssl-dev





On Fedora 22+ (current), the equivalent would be:

$ sudo dnf install python-devel python-virtualenv zlib-devel libxslt-devel openssl-devel





First, we create a virtualenv sandbox to isolate the demo from the
rest of the system, and then activate it:

$ virtualenv ga4gh-env
$ source ga4gh-env/bin/activate





Now, install the ga4gh package [https://pypi.python.org/pypi/ga4gh]
from the Python package index [https://pypi.python.org/pypi]. This
will take some time, as some upstream packages will need to be built and
installed.

(ga4gh-env) $ pip install ga4gh-server --pre





(Older versions of pip [https://pip.pypa.io/en/latest/] might not recognise
the --pre argument; if not, it is safe to remove it.)

Now we can download some example data, which we’ll use for our demo:

(ga4gh-env) $ wget https://github.com/ga4gh/ga4gh-server/releases/download/data/ga4gh-example-data_4.6.tar
(ga4gh-env) $ tar -xvf ga4gh-example-data_4.6.tar





After extracting the data, we can then run the ga4gh_server application:

(ga4gh-env) $ ga4gh_server
* Running on http://127.0.0.1:8000/ (Press CTRL+C to quit)
* Restarting with stat





(The server is using a default configuration which assumes the
existence of the ga4gh-example-data directory for simplicity here; see
the Configuration section for detailed information on how we configure the
server.) We now have a server running in the foreground. When it receives requests,
it will print out log entries to the terminal. A summary of the server’s
configuration and data is available in HTML format at
http://locahost:8000, which can be viewed in a web browser.
Leave the server running and open another terminal to complete the
rest of the demo.

To try out the server, we must send some requests to it using the GA4GH
protocol [http://ga4gh.org/#/api]. One way in which we can do this is to
manually create the JSON [http://json.org/] requests, and send these to the
server using cURL [http://curl.haxx.se/]:

$ curl --data '{}' --header 'Content-Type: application/json' \
http://localhost:8000/datasets/search | jq .





In this example, we used the search_datasets [http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/schema/org.ga4gh.search_datasets]
method to ask the server for all the Datasets on the server. It responded
by sending back some JSON, which we piped into the jq [https://stedolan.github.io/jq/]
JSON processor to make it easier to read. We get the following result:

{
  "nextPageToken": null,
  "datasets": [
    {
      "description": null,
      "name": "1kg-p3-subset",
      "id": "MWtnLXAzLXN1YnNldA=="
    }
  ]
}





In this example we sent a SearchDatasetsRequest object to the server
and received a SearchDatasetsResponse object in return. This response object
contained one Dataset object, which is contained in the datasets array.
This approach to interacting with the server is tedious and error prone, as
we have to hand-craft the request objects. It is also quite inconvenient, as
we may have to request many pages of objects to get all the objects
that satisfy our search criteria.

To simplify interacting with the server and to abstract away the low-level
network-level details of the server, we provide a client application.
To try this out, we start another instance of our virtualenv, and then send
the equivalent command using:

$ source ga4gh-env/bin/activate
(ga4gh-env) $ ga4gh_client datasets-search http://localhost:8000





MWtnLXAzLXN1YnNldA==    1kg-p3-subset





The output of this command is a summary of the Datasets on that are present on the
server. We can also get the output in JSON form such that each
object is written on one line:

(ga4gh-env) $ ga4gh_client datasets-search -O json http://localhost:8000





{"description": null, "name": "1kg-p3-subset", "id": "MWtnLXAzLXN1YnNldA=="}





This format is quite useful for larger queries, and can be piped into jq
to extract fields of interest, pretty printing and so on.

We can perform similar queries for variant data using the
search_variants [http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/schema/org.ga4gh.search_variants]
API call. First, we find the IDs of the VariantSets on the server using the
search_variant_sets [http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/schema/org.ga4gh.search_variant_sets]
method:

(ga4gh-env) $ ga4gh_client variantsets-search http://localhost:8000





MWtnLXAzLXN1YnNldDptdm5jYWxs    mvncall





This tells us that we have one VariantSet on the server, with ID MWtnLXAzLXN1YnNldDptdm5jYWxs
and name mvncall. We can then search for variants overlapping a given interval in a VariantSet
as follows:

(ga4gh-env) $ ga4gh_client variants-search http://localhost:8000 \
--referenceName=1 --start=45000 --end=50000





The output of the client program is a summary of the data received in a
free text form. This is not intended to be used as the input to other
programs, and is simply a data exploration tool for users.
To really use our data, we should use a GA4GH client library.

Part of the GA4GH reference implementation is a client library. This makes sending requests to the server and using the
responses very easy. For example, to run the same query as we
performed above, we can use the following code:

from __future__ import print_function

from ga4gh.client import client

httpClient = client.HttpClient("http://localhost:8000")
# Get the datasets on the server.
datasets = list(httpClient.search_datasets())
# Get the variantSets in the first dataset.
variantSets = list(httpClient.search_variant_sets(
    dataset_id=datasets[0].id))
# Now get the variants in the interval [45000, 50000) on chromosome 1
# in the first variantSet.
iterator = httpClient.search_variants(
    variant_set_id=variantSets[0].id,
    reference_name="1", start=45000, end=50000)
for variant in iterator:
    print(
        variant.reference_name, variant.start, variant.end,
        variant.reference_bases, variant.alternate_bases, sep="\t")





If we save this script as ga4gh-demo.py we can then run it
using:

(ga4gh-env) $ python ga4gh-demo.py






Host the 1000 Genomes VCF

The GA4GH reference server uses a registry of files and URLs to
populate its data repository. In this tutorial we will use the
command-line client to create a registry similar to that used by
1kgenomes.ga4gh.org. Your system should have samtools installed, and at
least 30GB to host the VCF and reference sets.


Repo administrator CLI

The CLI has methods for adding and removing Feature Sets, Read Group
Sets, Variant Sets, etc. Before we can begin adding files we must first
initialize an empty registry database. The directory that this database
is in should be readable and writable by the current user, as well as the
user running the server.

$ ga4gh_repo init registry.db





This command will create a file registry.db in the current working
directory. This file should stay relatively small (a few MB for
thousands of files).

Now we will add a dataset to the registry, which is a logical container
for the genomics data we will later add. You can optionally provide a
description using the --description flag.

$ ga4gh_repo add-dataset registry.db 1kgenomes \
    --description "Variants from the 1000 Genomes project and GENCODE genes annotations"








Add a Reference Set

It is possible for a server to host multiple reference assemblies. Here
we will go through all the steps of downloading and adding the FASTA
used for the 1000 Genomes VCF.

$ wget ftp://ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz





This file is provided in .gz format, which we will decompress, and
then with samtools installed on the system, recompress it using
bgzip.

$ gunzip hs37d5.fa.gz
$ bgzip hs37d5.fa





This may take a few minutes depending on your system as this file is
around 3GB. Next, we will add the reference set.

$ ga4gh_repo add-referenceset registry.db /full/path/to/hs37d5.fa.gz \
  -d “NCBI37 assembly of the human genome” \
  --species '{"id": "9606", "term": "Homo sapiens", "source_name": "NCBI", "source_version: "1.0"}' \
  --name NCBI37 \
  --sourceUri "ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz"





A number of optional command line flags have been added. We will be
referring to the name of this reference set NCBI37 when we later add
the variant set.




Add an ontology

Ontologies provide a source for parsing variant annotations, as well as
organizing feature types into ontology terms. A sequence ontology [http://www.sequenceontology.org/] instance must be added to the repository
to translate ontology term names in sequence and variant annotations to IDs.
Sequence ontology definitions can be downloaded from the Sequence Ontology
site [https://github.com/The-Sequence-Ontology/SO-Ontologies].

$ wget https://raw.githubusercontent.com/The-Sequence-Ontology/SO-Ontologies/master/so-xp-dec.obo
$ ga4gh_repo add-ontology registry.db /full/path/to/so-xp.obo -n so-xp








Add sequence annotations

The GENCODE Genes dataset provides annotations for features on the
reference assembly. The server uses a custom storage format for sequence
annotations, you can download a prepared set
here [https://ga4ghstore.blob.core.windows.net/testing/gencode_v24lift37.db].
It can be added to the registry using the following command. Notice
we have told the registry to associate the reference set added above
with these annotations.

$ wget https://ga4ghstore.blob.core.windows.net/testing/gencode_v24lift37.db
$ ga4gh_repo add-featureset registry.db 1kgenomes /full/path/to/gencode.v24lift37.annotation.db \
    --referenceSetName NCBI37 --ontologyName so-xp








Add the 1000 Genomes VCFs

The 1000 Genomes are publicly available on the EBI server. This
command uses wget to download the “release” VCFs to a directory named
release.

$ wget -m ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ -nd -P release -l 1
$ rm release/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf.gz





These files are already compressed and indexed. For the server to make use
of the files in this directory we must move the wgs file, since it covers
chromosomes that are represented elsewhere and overlapping VCF are not
currently supported. This file could be added as a separate variant set.

We can now add the directory to the registry using the following command.
Again, notice we have referred to the reference set by name.

$ ga4gh_repo add-variantset registry.db 1kgenomes /full/path/to/release/ \
    --name phase3-release --referenceSetName NCBI37








Add a BAM as a Read Group Set

Read Group Sets are the logical equivalent to BAM files within the
server. We will add a BAM hosting by the 1000 Genomes S3 bucket.
We will first download the index and then add it to the registry.

$ wget http://s3.amazonaws.com/1000genomes/phase3/data/HG00096/alignment/HG00096.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai
$ ga4gh_repo add-readgroupset registry.db 1kgenomes \
    -I HG00096.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai \
    --referenceSetName NCBI37 \
    http://s3.amazonaws.com/1000genomes/phase3/data/HG00096/alignment/HG00096.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam \





This might take a moment as some metadata about the file will be
retrieved from S3.




Start the server

Assuming you have set up your server to run using the registry file just
created, you can now start or restart the server to see the newly added
data. If the server is running via apache issue
sudo service apache2 restart. You can then visit the landing page of
the running server to see the newly added data.






Use the client package

If you only want to use the client and don’t need the server functionality,
there is a seperate pypi package, ga4gh-client [https://pypi.python.org/pypi/ga4gh-client], which includes only the
client.  It is also much quicker to install.  To install, simply run:

(ga4gh-env) $ pip install --pre ga4gh_client





This installs the ga4gh_client command line program, which provides
identical functionality to the ga4gh_client which is installed via the
ga4gh package:

(ga4gh-env) $ ga4gh_client datasets-search http://1kgenomes.ga4gh.org





Installing the ga4gh_client package also gives you access to the
client’s libraries for use in your own programs:

>>> from ga4gh.client import client
>>> client.HttpClient
<class 'ga4gh_client.client.HttpClient'>





For more examples of using the GA4GH client visit
this iPython notebook [https://github.com/BD2KGenomics/bioapi-examples/blob/master/python_notebooks/1kg.ipynb].




OIDC Demonstration

If we want authentication, we must have an OIDC authentication provider.
One can be found in oidc-provider, and run with the run.sh script.
We can then use this with the LocalOidConfig server configuration. So:

$ cd oidc-provider && ./run.sh





In another shell on the same machine

$ python server_dev.py -c LocalOidConfig





Make sure you know the hostname the server is running on. It can be found with

$ python -c 'import socket; print socket.gethostname()'





With a web browser, go to https://<server hostname>:<server port>. You may
need to accept the security warnings as there are probably self-signed
certificates. You will be taken through an authentication flow. When asked
for a username and password, try upper and crust. You will find
yourself back at the ga4gh server homepage. On the homepage will be a
‘session token’ This is the key to access the server with the client tool
as follows:

(ga4gh-env) $ ga4gh_client --key <key from homepage> variantsets-search https://localhost:8000/current
MWtnLXAzLXN1YnNldDptdm5jYWxs    mvncall











          

      

      

    

  

    
      
          
            
  
Installation

This section documents the process of deploying the GA4GH reference
server in a production setting. The intended audience is therefore
server administrators. If you are looking for a quick demo of the
GA4GH API using a local installation of the reference server
please check out the GA4GH API Demo. If you are looking for
instructions to get a development system up and running, then
please go to the Development section.


Deployment on Apache

To deploy on Apache on Debian/Ubuntu platforms, do the following.

First, we install some basic pre-requisite packages:

sudo apt-get install python-dev python-virtualenv zlib1g-dev libxslt1-dev libffi-dev libssl-dev libcurl4-openssl-dev





Install Apache and mod_wsgi, and enable mod_wsgi:

sudo apt-get install apache2 libapache2-mod-wsgi
sudo a2enmod wsgi





Create the Python egg cache directory, and make it writable by
the www-data user:

sudo mkdir /var/cache/apache2/python-egg-cache
sudo chown www-data:www-data /var/cache/apache2/python-egg-cache/





Create a directory to hold the GA4GH server code, configuration
and data. For convenience, we make this owned by the current user
(but make sure all the files are world-readable).:

sudo mkdir /srv/ga4gh
sudo chown $USER /srv/ga4gh
cd /srv/ga4gh





Make a virtualenv, and install the ga4gh package:

virtualenv ga4gh-server-env
source ga4gh-server-env/bin/activate
pip install ga4gh-server
deactivate





Download and unpack the example data:

wget https://github.com/ga4gh/ga4gh-server/releases/download/data/ga4gh-example-data_4.6.tar
tar -xf ga4gh-example-data_4.6.tar





Create the WSGI file at /srv/ga4gh/application.wsgi and write the following
contents:

from ga4gh.server.frontend import app as application
import ga4gh.server.frontend as frontend
frontend.configure("/srv/ga4gh/config.py")





Create the configuration file at /srv/ga4gh/config.py, and write the
following contents:

DATA_SOURCE = "/srv/ga4gh/ga4gh-example-data/registry.db"





Note that it is expected that the user running the server, www-data,
have write and read access to the directories containing data files.

(Many more configuration options are available — see the Configuration
section for a detailed discussion on the server configuration and input data.)

Configure Apache. Note that these instructions are for Apache 2.4 or greater.
Edit the file /etc/apache2/sites-available/000-default.conf
and insert the following contents towards the end of the file
(within the <VirtualHost:80>...</VirtualHost> block):

WSGIDaemonProcess ga4gh \
    processes=10 threads=1 \
    python-path=/srv/ga4gh/ga4gh-server-env/lib/python2.7/site-packages \
    python-eggs=/var/cache/apache2/python-egg-cache
WSGIScriptAlias /ga4gh /srv/ga4gh/application.wsgi

<Directory /srv/ga4gh>
    WSGIProcessGroup ga4gh
    WSGIApplicationGroup %{GLOBAL}
    Require all granted
</Directory>






Warning

Be sure to keep the number of threads limited to 1 in the WSGIDaemonProcess
setting. Performance tuning should be done using the processes setting.



The instructions for configuring Apache 2.2 (on Ubuntu 14.04) are the same as
above with thee following exceptions:

You need to edit
/etc/apache2/sites-enabled/000-default

instead of
/etc/apache2/sites-enabled/000-default.conf

And while in that file, you need to set permissions for the directory to

Allow from all





instead of

Require all granted





Now restart Apache:

sudo service apache2 restart





We will now test to see the server started properly by requesting the
landing page.

curl http://localhost/ga4gh/ --silent | grep GA4GH
#         <title>GA4GH reference server 0.2.3.dev4+nge0b07f3</title>
#    <h2>GA4GH reference server 0.2.3.dev4+nge0b07f3</h2>
# Welcome to the GA4GH reference server landing page! This page describes





We can also test the server by running some API commands. Please refer to
the instructions in the GA4GH API Demo for how to access data made available
by this server.

There are any number of different ways in which we can set up a WSGI
application under Apache, which may be preferable in different installations.
(In particular, the Apache configuration here may be specific to
Ubuntu 14.04, where this was tested.)
See the mod_wsgi documentation [https://code.google.com/p/modwsgi/] for
more details. These instructions are also specific to Debian/Ubuntu and
different commands and directory structures will be required on
different platforms.

The server can be deployed on any WSGI compliant web server. See the
instructions in the Flask documentation [http://flask.pocoo.org/docs/0.10/deploying/] for more details on
how to deploy on various other servers.


Troubleshooting

Server errors will be output to the web server’s error log by default (in Apache on
Debian/Ubuntu, for example, this is /var/log/apache2/error.log). Each client
request will be logged to the web server’s access log (in Apache on Debian/Ubuntu
this is /var/log/apache2/access.log).

For more server configuration options see Configuration






Deployment on Docker

It is also possible to deploy the server using Docker.

First, you need an environment running the docker daemon. For non-production use, we recommend boot2docker [http://boot2docker.io/]. For production use you should install docker on a stable linux distro.
Please reference the platform specific Docker installation instructions [https://docs.docker.com/installation/]. OSX and Windows are instructions for boot2docker.

Local Dataset Mounted as Volume

If you already have a dataset on your machine, you can download and deploy the apache server in one command:

docker run -e GA4GH_DATA_SOURCE=/data -v /my/ga4gh_data/:/data:ro -d -p 8000:80 --name ga4gh_server ga4gh/ga4gh-server:latest





Replace /my/ga4gh_data/ with the path to your data.

This will:


	pull the automatically built image from Dockerhub [https://registry.hub.docker.com/u/ga4gh/ga4gh-server/]


	start an apache server running mod_wsgi on container port 80


	mount your data read-only to the docker container


	assign a name to the container


	forward port 8000 to the container.




For more information on docker run options, see the run reference [https://docs.docker.com/reference/run/].

Demo Dataset Inside Container

If you do not have a dataset yet, you can deploy a container which includes the demo data:

docker run -d -p 8000:80 --name ga4gh_demo ga4gh/ga4gh-server:latest





This is identical to the production container, except that a copy of the demo data is included and appropriate defaults are set.

Developing Client Code: Run a Client Container and a Server

In this example you run a server as a daemon in one container, and the client as an ephemeral instance in another container.
From the client, the server is accessible at http://server/, and the /tmp/mydev directory is mounted at /app/mydev/. Any changes you make to scripts in mydev will be reflected on the host and container and persist even after the container dies.

# make a development dir and place the example client script in it
mkdir /tmp/mydev
curl https://raw.githubusercontent.com/ga4gh/ga4gh-server/master/scripts/demo_example.py > /tmp/mydev/demo_example.py
chmod +x /tmp/mydev/demo_example.py

# start the server daemon
# assumes the demo data on host at /my/ga4gh_data
docker run -e GA4GH_DEBUG=True -e GA4GH_DATA_SOURCE=/data -v /my/ga4gh_data/:/data:ro -d --name ga4gh_server ga4gh/ga4gh-server:latest

# start the client and drop into a bash shell, with mydev/ mounted read/write
# --link adds a host entry for server, and --rm destroys the container when you exit
docker run -e GA4GH_DEBUG=True -v /tmp/mydev/:/app/mydev:rw -it --name ga4gh_client --link ga4gh_server:server --entrypoint=/bin/bash --rm ga4gh/ga4gh-server:latest

# call the client code script
root@md5:/app# ./mydev/demo_example.py

# call the command line client
root@md5:/app# ga4gh_client variantsets-search http://server/current

#exit and destroy the client container
root@md5:/app# exit





Ports

The -p 8000:80 argument to docker run will run the docker container in the background, and translate calls from your host environment
port 8000 to the docker container port 80. At that point you should be able to access it like a normal website, albeit on port 8000.
Running in boot2docker [http://boot2docker.io/], you will need to forward the port from the boot2docker VM to the host.
From a terminal on the host to forward traffic from localhost:8000 to the VM 8000 on OSX:

VBoxManage controlvm boot2docker-vm natpf1 "ga4gh,tcp,127.0.0.1,8000,,8000"





For more info on port forwarding see the VirtualBox manual [https://www.virtualbox.org/manual/ch06.html#natforward] and this wiki article [https://github.com/CenturyLinkLabs/panamax-ui/wiki/How-To%3A-Port-Forwarding-on-VirtualBox].


Advanced

If you want to build the images yourself, that is possible. The ga4gh/ga4gh-server repo [https://registry.hub.docker.com/u/ga4gh/ga4gh-server/]
builds automatically on new commits, so this is only needed if you want to modify the Dockerfiles, or build from a different source.

The prod and demo builds are based off of mod_wsgi-docker [https://github.com/GrahamDumpleton/mod_wsgi-docker], a project from the author of mod_wsgi.
Please reference the Dockerfiles and documentation for that project during development on these builds.

Examples

Build the code at server/ and run for production, serving a dataset on local host located at /my/dataset

cd server/
docker build -t my-repo/my-image .
docker run -e GA4GH_DATA_SOURCE=/dataset -v /my/dataset:/dataset:ro -itd -p 8000:80 --name ga4gh_server my-repo/my-image





Build and run the production build from above, with the demo dataset in the container
(you will need to modify the FROM line in /deploy/variants/demo/Dockerfile if you want to use your image from above as the base):




Troubleshooting Docker

DNS

The docker daemon’s DNS may be corrupted if you switch networks, especially if run in a VM.
For boot2docker, running udhcpc on the VM usually fixes it.
From a terminal on the host:

eval "$(boot2docker shellinit)"
boot2docker ssh
>     sudo udhcpc
(password is tcuser)





DEBUG

To enable DEBUG on your docker server, call docker run with -e GA4GH_DEBUG=True

docker run -itd -p 8000:80 --name ga4gh_demo -e GA4GH_DEBUG=True ga4gh/ga4gh-server:latest





This will set the environment variable which is read by config.py

You can then get logs from the docker container by running docker logs (container) e.g. docker logs ga4gh_demo






Installing the development version on Mac OS X

Prerequisites

First install libraries and header code for
Python 2.7 [https://www.python.org/download/releases/2.7/].
It will be a lot easier if you have Homebrew [http://brew.sh/index.html],
the “missing package manager” for OS X, installed first.
To install Homebrew, paste the following at a Terminal prompt ($):

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"





Now use brew install to install Python if you don’t have Python 2.7
installed and then pip install, which comes with Python, can be used to
install virtual environment:

brew install python
pip install virtualenv





Install

Download source code from GitHub to the project target folder, here assumed to
be ~/ga4gh: (If you haven’t already done so,
set up github [https://help.github.com/articles/set-up-git/]
to work from your command line.)

git clone https://github.com/ga4gh/ga4gh-server.git





Before installing Python library dependencies, create a virtualenv sandbox to
isolate it from the rest of the system, and then activate it:

cd server
virtualenv ga4gh-env
source ga4gh-env/bin/activate





Install Python dependencies:

pip install -r dev-requirements.txt -c constraints.txt





Test and run

Run tests to verify the install:

ga4gh_run_tests





Please refer to the instructions in the GA4GH API Demo for how to access
data made available by this server.







          

      

      

    

  

    
      
          
            
  
Configuration

The GA4GH reference server Configuration file. allows Flask and application
specific configuration values to be set.


Configuration file

The GA4GH reference server is a Flask application [http://flask.pocoo.org/]
and uses the standard Flask configuration file mechanisms [http://flask.pocoo.org/docs/0.10/config/].
Many configuration files will be very simple, and will consist of just
one directive instructing the server where to find the data repository;
example, we might have

DATA_SOURCE = "/path/to/registry.db"





For production deployments, we shouldn’t need to add any more configuration
than this, as the other keys have sensible defaults. However,
all of Flask’s builtin configuration values [http://flask.pocoo.org/docs/0.10/config/]
are supported, as well as the extra custom configuration values documented
here. For information on preparing a data source see Data repository .

When debugging deployment issues, it can be very useful to turn on extra debugging
information as follows:

DEBUG = True






Warning

Debugging should only be used temporarily and not left on by default.
Running the server with Flask debugging enable is insecure and should
never be used in a production environment.




Configuration Values


	DEFAULT_PAGE_SIZE

	The default maximum number of values to fill into a page when responding
to search queries. If a client does not specify a page size in a query,
this value is used.



	MAX_RESPONSE_LENGTH

	The approximate maximum size of the server buffer used when creating
responses. This is somewhat smaller than the size of the JSON response
returned to the client. When a client makes a search request with a given
page size, the server will process this query and incrementally build
a response until (a) the number of values in the page list is equal
to the page size; (b) the size of the internal buffer in bytes
is >= MAX_RESPONSE_LENGTH; or (c) there are no more results left in the
query.



	REQUEST_VALIDATION

	Set this to True to strictly validate all incoming requests to ensure that
they conform to the protocol. This may result in clients with poor standards
compliance receiving errors rather than the expected results.



	INITIAL_PEERS

	When starting, you can set a list of initial peers to contact using a
simple text file. Add a URL per line for peers you would like to add to
the registry as initial peers. Each time the server starts, this set of
peers will be announced and added to the registry.



	LANDING_MESSAGE_HTML

	The server provides a simple landing page at its root. By setting this
value to point at a file containing an HTML block element it is possible to
customize the landing page. This can be helpful to provide support links
or details about the hosted datasets.



	OIDC_PROVIDER

	If this value is provided, then OIDC is configured and SSL is used. It is
the URI of the OpenID Connect provider, which should return an OIDC
provider configuration document.



	OIDC_REDIRECT_URI

	The URL of the redirect URI for OIDC. This will be something like
https://SERVER_NAME:PORT/oauth2callback. During testing
(and particularly in automated tests), if TESTING is True, we can have
this automatically configured, but this is discouraged in production,
and fails if TESTING is not True.



	OIDC_CLIENT_ID, OIDC_CLIENT_SECRET

	These are the client id and secret arranged with the OIDC provider,
if client registration is manual (google, for instance). If the provider
supports automated registration they are not required or used.



	OIDC_AUTHZ_ENDPOINT, OIDC_TOKEN_ENDPOINT, OIDC_TOKEN_REV_ENDPOINT

	If the authorization provider has no discovery document available, you can
set the authorization and token endpoints here.



	CACHE_DIRECTORY

	This directory is used to share data between processes when the server is
run in a production environment. It defaults to /tmp/ga4gh/.



	SECRET_KEY

	The secret key used by the server to encrypt cookies. Preferably, this
should be a long (~24 characters) random string, however any string will
work.



	AUTH0_ENABLED

	When set to true, enables authentication via Auth0.



	AUTH0_SCOPES

	These are the login identity providers that an Auth0 application is
configured to accept. More about scopes can be seen
here [https://auth0.com/docs/scopes].



	AUTH0_CALLBACK_URL

	This configuration value let’s Auth0 know which URL to return a session
to after authentication. It should match the setting in your Auth0
configuration.



	AUTH0_HOST

	The Auth0 host is the domain under which the Auth0 account is hosted.



	AUTH0_CLIENT_ID

	Each application is authenticated to your Auth0 account using a Client
ID and secret. This is available in the Auth0 configuration.



	AUTH0_CLIENT_SECRET

	The client secret is a preshared key between your instance of the server
and Auth0 and is available in the Auth0 configuration panel.



	AUTHORIZED_EMAILS

	A comma separated list of user










Configuring Auth0 Service

First login or sign up in Auth0 website: https://auth0.com/


Creating Client

On tab Client click in Create Client. Give a name for your
Client and choose the Non Interactive Clients client type. Click
Create.


[image: create\_client]


In Settings tab copy the Domain, Client ID and
Client Secret data.


[image: get\_client\_secret\_domain]


These data will be used to set the following server configuration values
(reference [http://ga4gh-reference-implementation.readthedocs.io/en/latest/configuration.html#configuration-values]):
- AUTH0_HOST with Domain; - AUTH0_CLIENT_ID with
Client ID; - AUTH0_CLIENT_SECRET with Client Secret.

Fill Allowed Callback URLs, Allowed Logout URLs and
Allowed Origins (CORS) with the web address of server endpoint plus
the related path.


[image: allow\_address]





Creating API

Go to APIs tab and click in Create API. The Identifier
should be the URL of server endpoint (the landing page). For this
example I am using root path and TCP port 80.


[image: create\_api]


On Scopes tab, create two scopes: openid and email.


[image: create\_scopes]


On Non Interactive Clients tab, authorize the previous created
Client. Select both scopes openid and email. Click Update
then Continue.


[image: authorize\_client]





Creating Database Connections

Go to Connections-Database tab and click Create DB Connection. I
disabled sign ups because I want to have control over user creation
allowing only certain people/software to have access on server.


[image: create\_database]


In Clients tab, activate the connection between the Client and the
Database.


[image: client\_db]





Creating Users

Go to Users tab and click Create User. Fill the fields.
Connection should be same one previously created. An email will be
send requesting to verify. I recommend creating your own user for
testing purposes.


[image: create\_user]





Setting up GA4GH server with authentication

Append the following server configuration values to config.py file
(reference [https://github.com/ga4gh/server/pull/1470]). Remember to
update the fields correctly. Create a SECRET_KEY. I didn’t understand
the field AUTH0_AUTHORIZED_EMAILS. I just used the same email I used
to login into Auth0 website.

AUTH0_ENABLED = True
SECRET_KEY = "super_secret"
AUTH0_SCOPES = "openid email"
AUTH0_CALLBACK_URL = "http://192.168.0.5/callback"
AUTH0_HOST = "USER.auth0.com"
AUTH0_CLIENT_ID = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
AUTH0_CLIENT_SECRET = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
AUTH0_AUTHORIZED_EMAILS = "name@host.com"





Restart the server.




Testing

Finally access server landing page. It will show an error and a link to
login. At login page, use the same email and password used to create a
user. Note that it does not have an option to create a user (it can be
changed).


[image: login]


After login you will see the token page.


[image: token]







OpenID Connect Providers

The server can be configured to use OpenID Connect (OIDC) for authentication.
As an example, here is how one configures it to use Google as the provider.

Go to https://console.developers.google.com/project and in create a project.

[image: _images/Create_project.png]
Navigate to the project -> APIs & auth -> Consent Screen and enter a product
name

[image: _images/Consent_screen_-_ga4gh.png]
Navigate to project -> APIs & auth -> Credentials, and create a new client ID.

[image: _images/Credentials_-_ga4gh.png]
Create the client as follows:

[image: _images/Credentials_-_ga4gh_2.png]
Which will give you the necessary client id and secret. Use these in the OIDC
configuration for the GA4GH server, using the OIDC_CLIENT_ID and
OIDC_CLIENT_SECRET configuration variables. The Redirect URI should match
the OIDC_REDIRECT_URI configuration variable, with the exception that the
redirect URI shown at google does not require a port (but the configuration
variable does). Finally, set the SECRET_KEY to any string for storing
cookies.

[image: _images/Credentials_-_ga4gh_3.png]






          

      

      

    

  

    
      
          
            
  
Data repository

Each GA4GH server represents a repository of information. This repository
consists of the reference sets, datasets, readgroup sets, variant sets etc. in
the server’s data model and may contain data from many different unrelated
projects. The server administrator defines and manages this repository using
the ga4gh_repo command line interface, which provides commands to manage
all of the objects represented by a GA4GH server.

The information about the objects in the GA4GH data model is stored in an SQL
database, called the “registry DB” or “registry”. The registry DB does not
contain the raw bulk data but rather “registers” the information about where
the server can find this information and some metadata about the object in
question. For example, if we have a variant set that is backed by a single VCF
file, the registry DB will contain the path to this file as well as the name of
the variant set, the reference set it is defined by, and other information
necessary to implement the GA4GH protocol. This registry architecture allows us
a lot of flexibility in the sources of data that we can use.


Command Line


init

The init command initialises a new registry DB at a given
file path. This is the first command that must be issued
when creating a new GA4GH repository.

usage: ga4gh_repo init [-h] [-f] registryPath






	Positional arguments:

	
	registryPath

	the location of the registry database







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo init registry.db








list

The list command is used to print the contents of a repository
to the screen. It is an essential tool for administrators to
understand the structure of the repository that they are managing.


Note

The list command is under development and will
be much more sophisticated in the future. In particular, the output
of this command should improve considerably in the near future.



usage: ga4gh_repo list [-h] registryPath






	Positional arguments:

	
	registryPath

	the location of the registry database









Examples:

$ ga4gh_repo list registry.db








list-announcements

To view the announcements the server has received, use this command. It will
output the announcements as a TSV that can be imported into a spreadsheet
application.

usage: ga4gh_repo list-announcements [-h] registryPath






	Positional arguments:

	
	registryPath

	the location of the registry database









Examples:

$ ga4gh_repo list-announcements registry.db > announcements.tsv








clear-announcements

To clear the received announcements run this command. This cannot be undone.

usage: ga4gh_repo clear-announcements [-h] registryPath






	Positional arguments:

	
	registryPath

	the location of the registry database









Examples:

$ ga4gh_repo clear-announcements registry.db








verify

The verify command is used to check that the integrity of the
data in a repository. The command checks each container object in turn
and ensures that it can read data from it. Read errors can occur for
any number of reasons (for example, a VCF file may have been moved
to another location since it was added to the registry), and the
verify command allows an administrator to check that all is
well in their repository.


Note

The verify command is under development and will
be much more sophisticated in the future. In particular, the output
of this command should improve considerably in the near future.



usage: ga4gh_repo verify [-h] registryPath






	Positional arguments:

	
	registryPath

	the location of the registry database









Examples:

$ ga4gh_repo verify registry.db








add-peer

The server maintains a list of known peers. To add a peer to this list use
the add-peer command.

usage: ga4gh_repo add-peer [-h] [-A ATTRIBUTES] registryPath url






	Positional arguments:

	
	registryPath

	the location of the registry database



	url

	The URL of the given resource







	Options:

	
	-A, --attributes

	additional attributes for the message expressed as JSON









Examples:

$ ga4gh_repo add-peer http://1kgenomes.ga4gh.org








remove-peer

You can remove a peer from the list of peers by its URL.

usage: ga4gh_repo remove-peer [-h] [-f] registryPath url






	Positional arguments:

	
	registryPath

	the location of the registry database



	url

	The URL of the given resource







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-peer http://1kgenomes.ga4gh.org








add-dataset

Creates a new dataset in a repository. A dataset is an arbitrary collection
of ReadGroupSets, VariantSets, VariantAnnotationSets and FeatureSets. Each
dataset has a name, which is used to identify it in the repository manager.

usage: ga4gh_repo add-dataset [-h] [-A ATTRIBUTES] [-d DESCRIPTION]
                              registryPath datasetName






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset







	Options:

	
	-A, --attributes

	additional attributes for the message expressed as JSON



	-d, --description

	The human-readable description of the dataset.









Examples:

$ ga4gh_repo add-dataset registry.db 1kg -d 'Example dataset using 1000 genomes data'





Adds the dataset with the name 1kg and description
'Example dataset using 1000 genomes data' to the
registry database registry.db.




add-referenceset

Adds a reference set derived from a FASTA file to a repository. Each
record in the FASTA file will correspond to a Reference in the new
ReferenceSet. The input FASTA file must be compressed with bgzip
and indexed using samtools faidx. Each ReferenceSet contains a
number of metadata values (.e.g. species) which can be set
using command line options.

usage: ga4gh_repo add-referenceset [-h] [-A ATTRIBUTES] [-r] [-n NAME]
                                   [-d DESCRIPTION] [--species SPECIES]
                                   [--isDerived ISDERIVED]
                                   [--assemblyId ASSEMBLYID]
                                   [--sourceAccessions SOURCEACCESSIONS]
                                   [--sourceUri SOURCEURI]
                                   registryPath filePath






	Positional arguments:

	
	registryPath

	the location of the registry database



	filePath

	The path of the FASTA file to use as a reference set. This file must be bgzipped and indexed.







	Options:

	
	-A, --attributes

	additional attributes for the message expressed as JSON



	-r, --relativePath

	store relative path in database



	-n, --name

	The name of the reference set



	-d, --description

	The human-readable description of the reference set.



	--species

	The species ontology term as a JSON string



	--isDerived

	Indicates if this reference set is derived from another



	--assemblyId

	The assembly id



	--sourceAccessions

	The source accessions (pass as comma-separated list)



	--sourceUri

	The source URI









Examples:

$ ga4gh_repo add-referenceset registry.db hs37d5.fa.gz \
    --description "NCBI37 assembly of the human genome" \
    --species '{"termId": "NCBI:9606", "term": "Homo sapiens"}' \
    --name NCBI37 \
    --sourceUri ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz





Adds a reference set used in the 1000 Genomes project using the name
NCBI37, also setting the species to 9606 (human).




add-biosample

Adds a new biosample to the repository. The biosample argument is
a JSON document according to the GA4GH JSON schema.

usage: ga4gh_repo add-biosample [-h]
                                registryPath datasetName biosampleName
                                biosample






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	biosampleName

	the name of the biosample



	biosample

	the JSON of the biosample









Examples:

$ ga4gh_repo add-biosample registry.db dataset1 HG00096 '{"individualId": "abc"}'





Adds the biosample named HG00096 to the repository with the individual ID
“abc”.




add-individual

Adds a new individual to the repository. The individual argument is
a JSON document following the GA4GH JSON schema.

usage: ga4gh_repo add-individual [-h]
                                 registryPath datasetName individualName
                                 individual






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	individualName

	the name of the individual



	individual

	the JSON of the individual









Examples:

$ ga4gh_repo add-individual registry.db dataset1 HG00096 '{"description": "A description"}'








add-ontology

Adds a new ontology to the repository. The ontology supplied must be a text
file in OBO format [http://owlcollab.github.io/oboformat/doc/obo-syntax.html]. If you wish to
serve sequence or variant annotations from a repository, a sequence ontology
(SO) instance is required to translate ontology term names held in annotations
to ontology IDs. Sequence ontology definitions can be downloaded from
the Sequence Ontology site [https://github.com/The-Sequence-Ontology/SO-Ontologies].

usage: ga4gh_repo add-ontology [-h] [-r] [-n NAME] registryPath filePath






	Positional arguments:

	
	registryPath

	the location of the registry database



	filePath

	The path of the OBO file defining this ontology.







	Options:

	
	-r, --relativePath

	store relative path in database



	-n, --name

	The name of the ontology









Examples:

$ ga4gh_repo add-ontology registry.db path/to/so-xp.obo





Adds the sequence ontology so-xp.obo to the repository using the
default naming rules.




add-variantset

Adds a variant set to a named dataset in a repository. Variant sets are
currently derived from one or more non-overlapping VCF/BCF files which
may be either stored locally or come from a remote URL. Multiple VCF
files can be specified either directly on the command line or by
providing a single directory argument that contains indexed VCF files.
If remote URLs are used then index files in the local file system must be
provided using the -I option.

usage: ga4gh_repo add-variantset [-h] [-r] [-I indexFiles [indexFiles ...]]
                                 [-n NAME] [-R REFERENCESETNAME]
                                 [-O ONTOLOGYNAME] [-A ATTRIBUTES] [-a]
                                 registryPath datasetName dataFiles
                                 [dataFiles ...]






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	dataFiles

	The VCF/BCF files representing the new VariantSet. These may be specified either one or more paths to local files or remote URLS, or as a path to a local directory containing VCF files. Either a single directory argument may be passed or a list of file paths/URLS, but not a mixture of directories and paths.







	Options:

	
	-r, --relativePath

	store relative path in database



	-I, --indexFiles

	The index files for the VCF/BCF files provided in the dataFiles argument. These must be provided in the same order as the data files.



	-n, --name

	The name of the VariantSet



	-R, --referenceSetName

	the name of the reference set to associate with this VariantSet



	-O, --ontologyName

	the name of the sequence ontology instance used to translate ontology term names to IDs in this VariantSet



	-A, --attributes

	additional attributes for the message expressed as JSON



	-a, --addAnnotationSets

	If the supplied VCF file contains annotations, create the corresponding VariantAnnotationSet.









Examples:

$ ga4gh_repo add-variantset registry.db 1kg 1kgPhase1/ -R NCBI37





Adds a new variant set to the dataset named 1kg in the repository defined
by the registry database registry.db using the VCF files contained in the
directory 1kgPhase1. Note that this directory must also contain the
corresponding indexes for these files. We associate the reference set named
NCBI37 with this new variant set. Because we do not provide a --name
argument, a name is automatically generated using the default name generation
rules.

$ ga4gh_repo add-variantset registry.db 1kg \
    1kgPhase1/chr1.vcf.gz 1kg/chr2.vcf.gz -n phase1-subset -R NCBI37





Like the last example, we add a new variant set to the dataset 1kg,
but here we only use the VCFs for chromosomes 1 and 2. We also specify the
name for this new variant set to be phase1-subset.

$ ga4gh_repo add-variantset registry.db 1kg \
    --name phase1-subset-remote -R NCBI37 \
    --indexFiles ALL.chr1.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz.tbi ALL.chr2.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz.tbi \
    ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20110521/ALL.chr1.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz \
    ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20110521/ALL.chr2.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz





This example performs the same task of creating a subset of the phase1
VCFs, but this time we use the remote URL directly and do not keep a
local copy of the VCF file. Because we are using remote URLs to define
the variant set, we have to download a local copy of the corresponding
index files and provide them on the command line using the --indexFiles
option.




add-readgroupset

Adds a readgroup set to a named dataset in a repository.  Readgroup sets are
currently derived from a single indexed BAM file, which can be either
stored locally or based on a remote URL. If the readgroup set is based on
a remote URL, then the index file must be stored locally and specified using
the --indexFile option.

Each readgroup set must be associated with the reference set that it is aligned
to. The add-readgroupset command first examines the headers of the BAM file
to see if it contains information about references, and then looks for a
reference set with name equal to the genome assembly identifer defined in the
header. (Specifically, we read the @SQ header line and use the value of the
AS tag as the default reference set name.) If this reference set exists,
then the readgroup set will be associated with it automatically. If it does not
(or we cannot find the appropriate information in the header), then the
add-readgroupset command will fail. In this case, the user must provide the
name of the reference set using the --referenceSetName option.

usage: ga4gh_repo add-readgroupset [-h] [-n NAME] [-R REFERENCESETNAME]
                                   [-A ATTRIBUTES] [-r] [-I INDEXFILE]
                                   registryPath datasetName dataFile






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	dataFile

	The file path or URL of the BAM file for this ReadGroupSet







	Options:

	
	-n, --name

	The name of the ReadGroupSet



	-R, --referenceSetName

	the name of the reference set to associate with this ReadGroupSet



	-A, --attributes

	additional attributes for the message expressed as JSON



	-r, --relativePath

	store relative path in database



	-I, --indexFile

	The file path of the BAM index for this ReadGroupSet. If the dataFile argument is a local file, this will be automatically inferred by appending ‘.bai’ to the file name. If the dataFile is a remote URL the path to a local file containing the BAM index must be provided









Examples:

$ ga4gh_repo add-readgroupset registry.db 1kg \
    path/to/HG00114.chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam





Adds a new readgroup set for an indexed 1000 Genomes BAM file stored on the
local file system. The index file follows the usual convention and is stored in
the same directory as the BAM file and has an extra .bai extension. The
name of the readgroup set is automatically derived from the file name, and the
reference set automatically set from the BAM header.

$ ga4gh_repo add-readgroupset registry.db 1kg ga4gh-example-data/HG00096.bam \
    -R GRCh37-subset -n HG0096-subset





Adds a new readgroup set based on a subset of the 1000 genomes reads for the
HG00096 sample from the example data used in the reference server. In this case
we specify that the reference set name GRCh37-subset be associated with the
readgroup set. We also override the default name generation rules and specify
the name HG00096-subset for the new readgroup set.

$ ga4gh_repo add-readgroupset registry.db 1kg \
    -n HG00114-remote
    -I /path/to/HG00114.chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai
    ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/phase3/data/HG00114/alignment/HG00114.chrom11.ILLUMINA.bwa.GBR.low_coverage.20120522.bam





Adds a new readgroups set based on a 1000 genomes BAM directly from the NCBI
FTP server. Because this readgroup set uses a remote FTP URL, we must specify
the location of the .bai index file on the local file system.




add-featureset

Adds a feature set to a named dataset in a repository. Feature sets
must be in a ‘.db’ file. An appropriate ‘.db’ file can
be generate from a GFF3 file using scripts/generate_gff3_db.py.

usage: ga4gh_repo add-featureset [-h] [-A ATTRIBUTES] [-r]
                                 [-R REFERENCESETNAME] [-O ONTOLOGYNAME]
                                 [-C CLASSNAME]
                                 registryPath datasetName filePath






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	filePath

	The path to the converted SQLite database containing Feature data







	Options:

	
	-A, --attributes

	additional attributes for the message expressed as JSON



	-r, --relativePath

	store relative path in database



	-R, --referenceSetName

	the name of the reference set to associate with this feature set



	-O, --ontologyName

	the name of the sequence ontology instance used to translate ontology term names to IDs in this feature set



	-C, --className

	the name of the class used to fetch features in this feature set









Examples:

$ ga4gh_repo add-featureset registry.db 1KG gencode.db \
    -R hg37 -O so-xp-simple





Adds the feature set gencode to the registry under the 1KG
dataset. The flags set the reference genome to be hg37 and the ontology to
use to so-xp-simple.




add-continuousset

Adds a continuous set to a named dataset in a repository. Continuous sets
must be in a bigWig file. The bigWig format is described here:
http://genome.ucsc.edu/goldenPath/help/bigWig.html. There are directions for
converting wiggle files to bigWig files on the page also.
Files in the bedGraph format can be converted using bedGraphToBigWig
(https://www.encodeproject.org/software/bedgraphtobigwig/).

usage: ga4gh_repo add-continuousset [-h] [-r] [-R REFERENCESETNAME]
                                    [-C CLASSNAME]
                                    registryPath datasetName filePath






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	filePath

	The path to the file contianing the continuous data 







	Options:

	
	-r, --relativePath

	store relative path in database



	-R, --referenceSetName

	the name of the reference set to associate with this continuous set



	-C, --className

	the name of the class used to fetch features in this continuous set









Examples:

$ ga4gh_repo add-continuousset registry.db 1KG continuous.bw \
    -R hg37





Adds the continuous set continuous to the registry under the 1KG
dataset. The flags set the reference genome to be hg37.




init-rnaquantificationset

Initializes a rnaquantification set.

usage: ga4gh_repo init-rnaquantificationset [-h] registryPath filePath






	Positional arguments:

	
	registryPath

	the location of the registry database



	filePath

	The path to the resulting Quantification Set









Examples:

$ ga4gh_repo init-rnaquantificationset repo.db rnaseq.db





Initializes the RNA Quantification Set with the filename rnaseq.db.




add-rnaquantification

Adds a rnaquantification to a RNA quantification set.

RNA quantification formats supported are currently kallisto and RSEM.

usage: ga4gh_repo add-rnaquantification [-h] [--biosampleName BIOSAMPLENAME]
                                        [--readGroupSetName READGROUPSETNAME]
                                        [--featureSetNames FEATURESETNAMES]
                                        [-n NAME] [-d DESCRIPTION] [-t]
                                        [-A ATTRIBUTES]
                                        filePath quantificationFilePath format
                                        registryPath datasetName






	Positional arguments:

	
	filePath

	The path to the RNA SQLite database to create or modify



	quantificationFilePath

	The path to the expression file.



	format

	format of the quantification input data



	registryPath

	the location of the registry database



	datasetName

	the name of the dataset







	Options:

	
	--biosampleName

	Biosample Name



	--readGroupSetName

	Read Group Set Name



	--featureSetNames

	Comma separated list



	-n, --name

	The name of the rna quantification



	-d, --description

	The human-readable description of the RnaQuantification.



	-t, --transcript

	sets the quantification type to transcript



	-A, --attributes

	additional attributes for the message expressed as JSON









Examples:

$ ga4gh_repo add-rnaquantification rnaseq.db data.tsv \
         kallisto ga4gh-example-data/registry.db brca1 \
        --biosampleName HG00096 --featureSetNames gencodev19
        --readGroupSetName HG00096rna --transcript





Adds the data.tsv in kallisto format to the rnaseq.db quantification set with
optional fields for associating a quantification with a Feature Set, Read Group
Set, and Biosample.




add-rnaquantificationset

When the desired RNA quantification have been added to the set, use this command
to add them to the registry.

usage: ga4gh_repo add-rnaquantificationset [-h] [-R REFERENCESETNAME]
                                           [-n NAME] [-A ATTRIBUTES]
                                           registryPath datasetName filePath






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	filePath

	The path to the converted SQLite database containing RNA data







	Options:

	
	-R, --referenceSetName

	the name of the reference set to associate with this RnaQuantificationSet



	-n, --name

	The name of the RnaQuantificationSet



	-A, --attributes

	additional attributes for the message expressed as JSON









Examples:

$ ga4gh_repo add-rnaquantificationset registry.db brca1 rnaseq.db \
    -R hg37 -n rnaseq





Adds the RNA quantification set rnaseq.db to the registry under the brca1
dataset. The flags set the reference genome to be hg37 and the name of the
set to rnaseq.




add-phenotypeassociationset

Adds an rdf object store.  The cancer genome database
Clinical Genomics Knowledge Base http://nif-crawler.neuinfo.org/monarch/ttl/cgd.ttl,
published by the Monarch project, is the supported format for Evidence.

usage: ga4gh_repo add-phenotypeassociationset [-h] [-n NAME] [-A ATTRIBUTES]
                                              registryPath datasetName dirPath






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	dirPath

	The path of the directory containing ttl files.







	Options:

	
	-n, --name

	The name of the PhenotypeAssociationSet



	-A, --attributes

	additional attributes for the message expressed as JSON









Examples:

$ ga4gh_repo add-phenotypeassociationset registry.db dataset1 /monarch/ttl/cgd.ttl -n cgd








remove-dataset

Removes a dataset from the repository and recursively removes all
objects (ReadGroupSets, VariantSets, etc) within this dataset.

usage: ga4gh_repo remove-dataset [-h] [-f] registryPath datasetName






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-dataset registry.db dataset1





Deletes the dataset with name dataset1 from the repository
represented by registry.db




remove-referenceset

Removes a reference set from the repository. Attempting
to remove a reference set that is referenced by other objects in the
repository will result in an error.

usage: ga4gh_repo remove-referenceset [-h] [-f] registryPath referenceSetName






	Positional arguments:

	
	registryPath

	the location of the registry database



	referenceSetName

	the name of the reference set







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-referenceset registry.db NCBI37





Deletes the reference set with name NCBI37 from the repository
represented by registry.db




remove-biosample

Removes a biosample from the repository.

usage: ga4gh_repo remove-biosample [-h] [-f]
                                   registryPath datasetName biosampleName






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	biosampleName

	the name of the biosample







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-biosample registry.db dataset1 HG00096





Deletes the biosample with name HG00096 in the dataset
dataset1 from the repository represented by registry.db




remove-individual

Removes an individual from the repository.

usage: ga4gh_repo remove-individual [-h] [-f]
                                    registryPath datasetName individualName






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	individualName

	the name of the individual







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-individual registry.db dataset1 HG00096





Deletes the individual with name HG00096 in the dataset
dataset1 from the repository represented by registry.db




remove-ontology

Removes an ontology from the repository. Attempting
to remove an ontology that is referenced by other objects in the
repository will result in an error.

usage: ga4gh_repo remove-ontology [-h] [-f] registryPath ontologyName






	Positional arguments:

	
	registryPath

	the location of the registry database



	ontologyName

	the name of the ontology







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-ontology registry.db so-xp





Deletes the ontology with name so-xp from the repository
represented by registry.db




remove-variantset

Removes a variant set from the repository. This also deletes all
associated call sets and variant annotation sets from the repository.

usage: ga4gh_repo remove-variantset [-h] [-f]
                                    registryPath datasetName variantSetName






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	variantSetName

	the name of the variant set







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-variantset registry.db dataset1 phase3-release





Deletes the variant set named phase3-release from the dataset
named dataset1 from the repository represented by registry.db.




remove-readgroupset

Removes a read group set from the repository.

usage: ga4gh_repo remove-readgroupset [-h] [-f]
                                      registryPath datasetName
                                      readGroupSetName






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	readGroupSetName

	the name of the read group set







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-readgroupset registry.db dataset1 HG00114





Deletes the readgroup set named HG00114 from the dataset named
dataset1 from the repository represented by registry.db.




remove-featureset

Removes a feature set from the repository.

usage: ga4gh_repo remove-featureset [-h] [-f]
                                    registryPath datasetName featureSetName






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	featureSetName

	the name of the feature set







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-featureset registry.db 1KG gencode-genes





Deletes the feature set named gencode-genes from the dataset
named 1KG from the repository represented by registry.db.




remove-continuousset

Removes a continuous set from the repository.

usage: ga4gh_repo remove-continuousset [-h] [-f]
                                       registryPath datasetName
                                       continuousSetName






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	continuousSetName

	the name of the continuous set







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-continuousset registry.db 1KG continuous





Deletes the feature set named continuous from the dataset
named 1KG from the repository represented by registry.db.




remove-rnaquantificationset

Removes a rna quantification set from the repository.

usage: ga4gh_repo remove-rnaquantificationset [-h] [-f]
                                              registryPath datasetName
                                              rnaQuantificationSetName






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	rnaQuantificationSetName

	the name of the RNA Quantification Set







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-rnaquantificationset registry.db dataset1 ENCFF305LZB





Deletes the rnaquantification set named ENCFF305LZB from the dataset named
dataset1 from the repository represented by registry.db.




remove-phenotypeassociationset

Removes an rdf object store.

usage: ga4gh_repo remove-phenotypeassociationset [-h] [-f]
                                                 registryPath datasetName name






	Positional arguments:

	
	registryPath

	the location of the registry database



	datasetName

	the name of the dataset



	name

	The name of the phenotype association set







	Options:

	
	-f, --force

	do not prompt for confirmation









Examples:

$ ga4gh_repo remove-phenotypeassociationset registry.db dataset1  cgd













          

      

      

    

  

    
      
          
            
  
Development

Thanks for your interest in helping us develop the GA4GH reference
implementation! There are lots of ways to contribute, and it’s easy
to get up and running. This page should provide the basic information
required to get started; if you encounter any difficulties
please let us know [https://github.com/ga4gh/ga4gh-server/issues]


Warning

This guide is a work in progress, and is incomplete.




Development environment

We need a development Python 2.7 installation, Git, and some basic
libraries. On Debian or Ubuntu, we can install these using

sudo apt-get install python-dev git zlib1g-dev libxslt1-dev libffi-dev libssl-dev curl libcurl4-openssl-dev






Note

Instructions for configuring the reference server on Mac OS X can be found here Installation.



If you don’t have admin access to your machine, please contact your system
administrator, and ask them to install the development version of Python 2.7
and the development headers for zlib [http://www.zlib.net/].

You will also need to install Protocol Buffers 3.0 in your development
environment.  The general process for doing the install is best described in
the protobuf documentation here: https://github.com/google/protobuf
If you are working on Mac OS X then there is an easy install process
through homebrew:

brew update && brew install --devel protobuf





Once these basic prerequisites are in place, we can then bootstrap our
local Python installation so that we have all of the packages we require
and we can keep them up to date. Because we use the functionality
of the recent versions of pip and other tools, it is important to
use our own version of it and not any older versions that may be
already on the system.

wget https://bootstrap.pypa.io/get-pip.py
python get-pip.py --user





This creates a user specific [https://www.python.org/dev/peps/pep-0370/]
site-packages installation for Python, which is based in your ~/.local
directory. This means that you can now install any Python packages you like
without needing to either bother your sysadmin or worry about breaking your
system Python installation. To use this, you need to add the newly installed
version of pip to your PATH. This can be done by adding something
like

export PATH=$HOME/.local/bin:$PATH





to your ~/.bashrc file. (This will be slightly different if you use
another shell like csh or zsh.)

We then need to activate this configuration by logging out, and logging back in.
Then, test this by running:

pip --version
#pip 6.0.8 from /home/username/.local/lib/python2.7/site-packages (python 2.7)





From here, we suggest using virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/]
to manage your python environments. You can install and activate a virtual environment
using:

pip install virtualenv
virtualenv env
source env/bin/activate








Using Development Constraints

The server uses the GA4GH schemas as a basis for serializing and deserializing
data. This means that the server depends on the schemas, and at times a developer
will need to point at a specific version of the schemas to reflect a change to
the data model.

There is a constraints.txt file in the root of the source tree that can be
used to pin specific dependencies for a given requirement. For example, to use
a specific branch of the schemas when developing the server hosted by github we can add
the line:

git+git://github.com/david4096/schemas.git@protobuf31#egg=ga4gh_schemas





This informs the installer to resolve dependencies from github before PyPi,
allowing the developer to work against a specific version of the schemas under
their control.

By explicitly stating a dependency, others can review changes to the data model. When
a change has been accepted in the schemas, you can adjust your constraints to point
at the current master branch of schemas.

git+git://github.com/ga4gh/schemas.git@master#egg=ga4gh_schemas





At the time of a release, the same process allows us to specify a precise released
version of the schemas and client to develop against.




GitHub workflow

First, go to https://github.com/ga4gh/ga4gh-server and click on the ‘Fork’
button in the top right-hand corner. This will allow you to create
your own private fork of the server project where you can work.
See the GitHub documentation [https://help.github.com/articles/fork-a-repo/]
for help on forking repositories.
Once you have created your own fork on GitHub, you’ll need to clone a
local copy of this repo. This might look something like:

git clone git@github.com:username/server.git





We can then install all of the packages that we need for developing the
GA4GH reference server:

cd server
virtualenv env
source env/bin/activate
pip install -r dev-requirements.txt -c constraints.txt





This will take a little time as the libraries that we require are
fetched from PyPI and built. You can now start the server using a python server_dev.py,
or by installing it to the current environment using python setup.py install and then
running ga4gh_server. For more information on using the server, visit GA4GH API Demo.

It is also important to set up an
upstream remote [https://help.github.com/articles/configuring-a-remote-for-a-fork/]
for your repo so that you can sync up with the changes that other people
are making:

git remote add upstream https://github.com/ga4gh/ga4gh-server.git





All development is done against the master branch.

All development should be done in a topic branch.  That is, a branch
that the developer creates him or herself.  These steps will create
a topic branch (replace TOPIC_BRANCH_NAME appropriately):

git fetch --all
git checkout master
git merge --ff-only upstream/master
git checkout -b TOPIC_BRANCH_NAME





Topic branch names should include the issue number (if there is a tracked
issue this change is addressing) and provide some hint as to what the
changes include.  For instance, a branch that addresses the (imaginary)
tracked issue with issue number #123 to add more widgets to the code
might be named 123_more_widgets.

At this point, you are ready to start adding, editing and deleting files.
Stage changes with git add.  Afterwards, checkpoint your progress by
making commits:

git commit -m 'Awesome changes'





(You can also pass the --amend flag to git commit if you want to
incorporate staged changes into the most recent commit.)

Once you have changes that you want to share with others, push your
topic branch to GitHub:

git push origin TOPIC_BRANCH_NAME





Then create a pull request using the GitHub interface.  This pull request
should be against the master branch (this should happen automatically).

At this point, other developers will weigh in on your changes and will
likely suggest modifications before the change can be merged into
master.  When you get around to incorporating these suggestions,
it is likely that more commits will have been added to the master
branch.  Since you (almost) always want to be developing off of the
latest version of the code, you need to perform a rebase to incorporate
the most recent changes from master into your branch.


Warning

We recommend against using git pull.  Use git fetch and git
rebase to update your topic branch against mainline branches
instead.  See the Git Workflow Appendix for
elaboration.



git fetch --all
git checkout master
git merge --ff-only upstream/master
git checkout TOPIC_BRANCH_NAME
git rebase master





At this point, several things could happen.  In the best case, the rebase
will complete without problems and you can continue developing.  In other
cases, the rebase will stop midway and report a merge conflict.  That is,
git has determined that it is impossible for it to determine how to
combine the changes from the new commits in the master branch and
your changes in your topic branch and needs manual intervention to
proceed.  GitHub has some
documentation [https://help.github.com/articles/resolving-merge-conflicts-after-a-git-rebase/] on how to resolve rebase merge conflicts.

Once you have updated your branch to the point where you think that you
want to re-submit the code for other developers to consider, push the
branch again, this time using the force flag:

git push --force origin TOPIC_BRANCH_NAME





If you had tried to push the topic branch without using the force flag,
it would have failed.  This is because non-force pushes only succeed when
you are only adding new commits to the tip of the existing remote branch.
When you want to do something other than that, such as insert commits
in the middle of the branch history (what git rebase does), or modify a
commit (what git commit --amend does) you need to blow away the remote
version of your branch and replace it with the local version.  This is
exactly what a force push does.


Warning

Never use the force flag to push to the upstream repository.  Never use
the force flag to push to the master.  Only use
the force flag on your repository and on your topic branches.
Otherwise you run the risk of screwing up the mainline branches, which
will require manual intervention by a senior developer and manual
changes by every downstream developer.  That is a recoverable
situation, but also one that we would rather avoid.  (Note: a hint that
this has happened is that one of the above listed merge commands that
uses the --ff-only flag to merge a remote mainline branch into a
local mainline branch fails.)



Once your pull request has been merged into master, you can close
the pull request and delete the remote branch in the GitHub interface.
Locally, run this command to delete the topic branch:

git branch -D TOPIC_BRANCH_NAME





Only the tip of the iceberg of git and GitHub has been covered in this
section, and much more can be learned by browsing their documentation.
For instance, get help on the git commit command by running:

git help commit





To master git, we recommend reading this free book (save chapter four,
which is about git server configuration): Pro Git [https://git-scm.com/book/en/v2].




Contributing

See the files CONTRIBUTING.md and STYLE.md for an overview of
the processes for contributing code and the style guidelines that we
use.




Development utilities

All of the command line interface utilities have local scripts that
simplify development. To run the server locally in development mode, we can use the server_dev.py script, e.g.:

python server_dev.py





will run a server using the default configuration. This default configuration
expects a data hierarchy to exist in the ga4gh-example-data directory.
This default configuration can be changed by providing a (fully qualified)
path to a configuration file (see the Configuration
section for details).

There is also an OpenID Connect (oidc) provider you can run locally for
development and testing. It resides in /oidc-provider and has a run.sh
file that creates a virtualenv, installs the necessary packages, and
runs the server. Configuration files can be found in
/oidc-provider/simple_op:

cd oidc-provider
./run.sh





The provider expects OIDC redirect URIs to be over HTTPS, so if the ga4gh
server is started with OIDC enabled, it defaults to HTTPS. You can run the
server against this using:

python server_dev.py -c LocalOidConfig





For tips on how to profile the performance of the server see Profiling the Reference Server




Organization

The code for the project is held in the ga4gh package, which corresponds to
the ga4gh directory in the project root. Within this package, the
functionality is split between the client, server, protocol and
cli modules.  The cli module contains the definitions for the
ga4gh_client and ga4gh_server programs.




Git Workflow Appendix


Don’t use git pull

We recommend against using git pull.  The git pull command by
default combines the git fetch and the git merge command.  If your
local branch has diverged from its remote tracking branch, running git
pull will create a merge commit locally to join the two branches.

In some workflows, this is not an issue.  For us, however, it creates a
problem in the future.  When you are ready to submit your topic branch in a
pull request, we ask you to squash your commits (usually down to one
commit).  Given the complex graph topography created by all of the merges, the
order in which git applies commits in the squash is very difficult to
reason about and will likely create merge conflicts that you find
unnecessary and nonsensical (and therefore, highly aggravating!).

We instead recommend using git fetch and git rebase to update your
local topic branch against a mainline branch.  This will create a linear
commit history in your topic branch, which will be easy to squash, since the
commits are applied in the squash in the order that you made them.

git pull does have the --rebase option which will do a rebase
instead of a merge to incorporate the remote branch.  One can also set the
branch.autosetuprebase always config option to have git pull do a
rebase by default (i.e. without passing the --rebase flag) instead of a
merge.  This will avoid the issue of squashing a non-linear commit history.

So, in truth, we are really recommending against squashing local branches
with many merge commits in them.  However, using the default settings for
git pull is the easiest way to end up in this situation.  Therefore,
don’t use git pull unless you know what you are doing.




Squash, then rebase

When updating a local topic branch with changes from a mainline branch, we
recommend squashing commits in your topic branch down to one commit before
rebasing on top of the mainline branch.  The reason for this is that, under the
hood, to apply the rebase git rebase essentially cherry-picks each
commit from your topic branch not in the mainline branch and applies it to the
mainline branch.  Each one of these applications can cause a merge
conflict.  It is much better to face the potential of only one merge
conflict than N merge conflicts (where N is the number of unique commits in the
local branch)!

The difficulty of proceeding the opposite way (rebasing, then squashing) is
only compounded because of the unintuitiveness of the N merge conflicts.
When presented with a merge conflict, your likely intuition is to put the
file in the state that you think it ought to be in, namely the condition it was
in after the Nth commit.  However, if that state was different than the
state that git thinks it should be in – namely, the state of the file at
commit X where X<N – then you have only created the potential for more
merge conflicts.  When the next intermediate commit, Y (where X<Y<N) is
applied, it too will create a merge conflict.  And so on.

So squash, then rebase, and avoid this whole dilemma.  The terms are a bit
confusing since both “squashing” and “rebasing” are accomplished via the
git rebase command.  As mentioned above, squash the commits in your
topic branch with (assuming you have branched off of the master
mainline branch):

git rebase -i `git merge-base master HEAD`





(git merge-base master HEAD specifies the most recent commit that both
master and your topic branch share in common.  Normally this is
equivalent to the most recent commit of master, but that’s not
guaranteed – for instance, if you have updated your local master
branch with additional commits from the remote master since you
created your topic branch which branched off of the local master.)

And rebase with (again, assuming master as the mainline branch):

git rebase master








GitHub’s broken merge/CI model

GitHub supports continuous integration (CI) via Travis CI [https://travis-ci.com/].  On every pull request, Travis runs a suite of
tests to determine if the PR is safe to merge into the mainline branch that it
targets.  Unfortunately, the way that GitHub’s merge model is structured
does not guarantee this property.  That is, it is possible for a PR to pass the
Travis tests but for the mainline branch to fail them after that PR is
merged.

How can this happen?  Let’s illustrate by example: suppose PR A and PR B
both branch off of commit M, which is the most recent commit in the
mainline branch.  A and B both pass CI, so it appears that it is safe to
merge them into the mainline branch.  However, it is also true that the
changes in A and B have never been tested together until CI is run on the
mainline branch after both have been merged.  If PR A and B have
incompatible changes, even if both merge cleanly, CI will fail in the
mainline branch.

GitHub could solve this issue by not allowing a PR to be merged unless it
both passed CI and its branch contained (in addition to the commits it
wanted to merge in to mainline) every commit in the mainline branch.  That is,
no PR could be merged into mainline unless its commits were tested with
every commit already in mainline.  Right now GitHub does not mandate this
strict sequencing of commits, which is why it can never guarantee that the
mainline CI will pass, even if all the PR CIs passed.

Developers could also enforce this property manually, but we have
determined that not using GitHub’s UI merging features and judiciously
re-submitting PRs for additional CI would be more effort than fixing a
broken test in a mainline branch once in a while.

GitHub has recently introduced Protected Branches [https://help.github.com/articles/about-protected-branches/], which fixes
this issue by mandating a strict sequencing of commits as described above.  We
have protected all of our trunk branches.  The downside of using protected
branches is increased developer overhead for each branch: merging PR A
targeting trunk branch T immediately makes PR B targeting T out of date and
therefore unmergable without pulling in the most recent changes from T and
re-running CI on B.  However, we think it is worth enabling this feature to
prevent broken trunk branches.




Managing long-running branches

Normally, the development process concerns two branches: the feature branch
that one is developing in and the trunk branch that one submits a pull
request against (usually this is master).  Sometimes, development of a
major feature may require a branch that lives on for a long time before
being incorporated into a trunk branch.  This branch we call a topic branch.

For developers, the process of submitting code to a topic branch is almost
identical to submitting code to a trunk branch.  The only difference is
that the pull request is made against the topic branch instead of the trunk
branch (this is specified in the GitHub pull request UI).

Topic branches do, however, require more management.  Each long-lived topic
branch will be assigned a branch manager.  This person is responsible for
keeping the branch reasonably up to date with changes that happen in the
trunk branch off of which it is branched.  The list of long running
branches and their corresponding branch managers can be found here [https://github.com/ga4gh/ga4gh-server/wiki/Long-running-topic-branches-and-branch-managers].

It is up to the branch manager how frequently the topic branch pulls in
changes from the trunk branch.  All topic branches are hosted on the
ga4gh/ga4gh-server repository and are GitHub protected branches.  That is,
there can be no force pushes to the branches, so they must be updated using
git merge rather than git rebase.  Updates to topic branches must be
done via pull requests (rather than directly on the command line) so that the
Travis CI runs and passes prior to merging.






Release process

There are two types of releases: development releases, and stable
bugfix releases. Development releases happen as a matter of
course while we are working on a given minor version series, and
may be either a result of some new features being ready for use
or a minor bugfix. Stable bugfix releases occur when mainline development
has moved on to another minor version, and a bugfix is required for the
currently released version. These two cases are handled in different
ways.


Development releases

Version numbers are MAJOR.MINOR.PATCH triples. Minor version increments
happen when significant changes are required to the server codebase,
which will result in a significant departure from the previously
released version, either in code layout or in functionality. During
the normal process of development within a minor version series,
patch updates are routinely and regularly released.  (In some cases bugfix
releases can also come with a suffix, e.g. 0.6.0a9.post1.)

Making a release entails the following steps:


	Create a PR against master that has the following changes:


	update the release notes in docs/status.rst with a description of what is in the release


	modify requirements.txt to pin the ga4gh packages to specific versions


	modify constraints.txt to comment out all the lines referencing ga4gh packages


	modify constraints.txt.default to have the same contents as constraints.txt


	modify docs/environment.yml to pin the ga4gh packages to specific versions






	Once this has been merged, tag the release on GitHub (on the releases [https://github.com/ga4gh/ga4gh-server/releases] page) with the
appropriate version number.


	Fetch the tag from the upstream repo, and checkout this tag.


	Create the distribution tarball using python setup.py sdist, and then
upload the resulting tarball to PyPI using
twine upload dist/ga4gh-$MAJOR.$MINOR.$PATCH.tar.gz (using
the correct file name).


	Verify that the documentation at
http://ga4gh-server.readthedocs.org/en/stable/
is for the correct version (it may take a few minutes for this to
happen after the release has been tagged on GitHub).  The release
notes docs should have changed, so that is a good section to look at
to confirm the change.




All of the above steps after the tag is dropped on the target commit are now
automated [https://docs.travis-ci.com/user/deployment/pypi/] using
Travis’ capability to deploy to Pypi.

Note that once a filename is uploaded to pypi, it can not be reuploaded (see this pypi issue [https://github.com/pypa/packaging-problems/issues/74]), so if a mistake is made in uploading a particular tag, a new tag will need to be created to perform the upload.  Usually this means revving the post number at the end of the tag.




Stable bugfix release

When a minor version series has ended because of some significant shift
in the server internals, there will be a period when the master branch is not
in a releasable state. If a bugfix release is required during this period,
we create a release using the following process:


	If it does not already exist, create a release branch called
release-$MAJOR.$MINOR from the tag of the last release.


	Fix the bug by either cherry picking the relevant commits
from master, or creating PRs against the release-$MAJOR.$MINOR
branch if the bug does not apply to master.


	Follow steps 1-5 in the process for Development releases above,
except using the release-$MAJOR.$MINOR branch as the base
instead of master.







Releasing multiple repositories

If releasing multiple repositories, releases must be done in order so that
downstream ga4gh packages can be verified that they work with the upstream
ga4gh package versions to which they are pinned before releasing them.
Given our current repositories, if doing a release of all ga4gh packages, the
following package order must be followed: ga4gh-common,
ga4gh-schemas, ga4gh-client, ga4gh-server.









          

      

      

    

  

    
      
          
            
  
Status

The GA4GH server is currently under active development, and several
features are not yet fully functional.  These mostly involve the
reads API. Some missing features are:


	Unmapped reads. We do not support searching for unmapped reads.


	Searching over multiple ReadGroups in different ReadGroupSets.




For more detail on individual development issues, please see the project’s
issue page [https://github.com/ga4gh/ga4gh-server/issues].


Release Notes


0.3.6

This an alpha pre-release that contains some major updates. The most important
changes are highlighted in bold below. We have also made some updates to
the documentation.

Features:


	Rename package from “ga4gh” to “ga4gh-server” #1582 [https://github.com/ga4gh/ga4gh-server/issues/1582], #1583 [https://github.com/ga4gh/ga4gh-server/issues/1583]


	Added support for BigWig files in a new Continuous Data object #1573 [https://github.com/ga4gh/ga4gh-server/issues/1573]  New endpoints and message types include:






	POST /continuoussets/search


	GET /continuoussets/{id}


	POST /continuous/search


	Continuous (new)


	ContinuousSet (new)








	Add ability to list and join peer server networks #1507 [https://github.com/ga4gh/ga4gh-server/issues/1507]  New endpoints and message types include:






	POST /peers/list


	POST /peers/announce


	GET /info


	ListPeersResponse (new)


	Peer (new)


	AnnouncePeerResponse (new)


	GetInfoResponse (new)








	Remove feature_id from ExpressionLevel and add ability to search by the Name field #1580 [https://github.com/ga4gh/ga4gh-server/issues/1580]  Impacts






	POST /expressionlevels/search


	GET /expressionlevels/{id}








	Replaced info fields with rich type Attributes fields #1521 [https://github.com/ga4gh/ga4gh-server/issues/1521]  Impacts the following message types:






	TranscriptEffect


	VariantAnnotation


	Individual


	Biosample


	Experiment (new)


	Analysis (new)


	Dataset


	ReadGroup


	ReadGroupSet


	ReadAlignment


	Reference


	ReferenceSet


	RnaQuantificationSet


	RnaQuantification


	ExpressionLevel


	Feature


	VariantSetMetadata


	CallSet


	Call


	Variant








	Replace NCBI taxon ID integer with ontology term #1551 [https://github.com/ga4gh/ga4gh-server/issues/1551]  Impacts the following message types:






	Reference


	ReferenceSet








	Changed ontology term “id” to “term_id” #1513 [https://github.com/ga4gh/ga4gh-server/issues/1513]  Impacts the following message types:






	OntologyTerm







Documentation:


	Document auto-releases, constraint instructions #1578 [https://github.com/ga4gh/ga4gh-server/issues/1578]


	Improved development document for virtualenv command #1550 [https://github.com/ga4gh/ga4gh-server/issues/1550]




Infrastructure:


	Automatically deploy tagged releases to Pypi from Travis #1576 [https://github.com/ga4gh/ga4gh-server/issues/1576]


	Refactor transcript annotation #1334 [https://github.com/ga4gh/ga4gh-server/issues/1334]


	Speedups to rna quantification ingest #1564 [https://github.com/ga4gh/ga4gh-server/issues/1564]







0.3.5

Alpha pre-release supporting minor update. We have done some restructuring,
some bug fixes and some minor protocol updates in this release.


	
	Restructuring: We have reorganized our codebase to separate out the schemas,

	client, and server components as separately installable Python components.
Running ‘pip install ga4gh –pre’ will still automatically install all
required packages. But now developers who wish to leverage the Python
libraries around the schemas can just use ‘pip install ga4gh-schemas’,
and developers of client code can gain access to the client API library
my just running ‘pip install ga4gh-client’.







	
	Bug fixes and improvements

	
	Fix to be able to handle VCFs with genotype == ‘./.’ (server #1389)


	Fixed bug with OIDC Authentication (server #1452, #1508)


	Repo manager list out of range error (server #1472)


	G2P features search was returning a 404, this has been fixed
(server #1379)


	Sped up readGroupSet generator (server #1316)


	Enhanced ENCODE RNA downloader


	Added support for Auth0 (server #1452)


	Refactored usage of the term ‘biosample’ to be consistent
(server #1394)


	Moved to Protobuf version 3.1 (server #1471)










	
	Documentation updates

	
	Github usage


	Added sections for new Python packages: client and schemas


	Split out repository manager docs


	Docker file documentation updated


	Updated the Configuration section to document the Auth0 settings















0.3.4

Alpha pre-release supporting major feature update.


	
	G2P functionality added to support the following API endpoints:

	
	POST /phenotypeassociationsets/search


	POST /phenotypes/search


	POST /featurephenotypeassociations/search










	Biometadata tags for RNA quantifications.


	Improvements to the RNA quantification ingestion pipeline.


	Migrated CLI related code to cli module.


	Add demonstration RNA quantification data.


	Minor doc fixes




Known Issues


	When searching using a wildcard, *, an Internal Server Error
occurs. #1379


	When listing many Read Group Sets, responses can be quite slow
causing timeouts. #1316







0.3.3

Alpha pre-release supporting major feature update.


	
	RNA functionality added to support the following API endpoints:

	
	POST /rnaquantificationsets/search


	GET /rnaquantificationsets/{id}


	POST /rnaquantifications/search


	GET /rnaquantifications/{id}


	POST /expressionlevels/search


	GET /expressionlevels/{id}










	Fixed bug where transcript effects would be repeated within a
search result.







0.3.2

Alpha pre-release supporting major feature update.


	Metadata functionality added to support biosample and individual metadata
capabilities.


	Now support searching features by ‘name’ and ‘gene_symbol’. These fields
have been promoted to facilitate the future integration of the RNA and
G2P modules.







0.3.1

Alpha pre-release supporting major feature update. This release is not
backwards compatible with previous releases due to several changes to
the schemas that were required to move to protocol buffers.


	This release includes the code changes necessary for the migration
to protocol buffers from Avro.


	Client applications will need to be rebuilt to the new schemas and
use the protobuf json serialization libraries to be compatible
with this version of the server.







0.3.0

Alpha pre-release supporting major feature update. This release is not
backwards compatible with previous releases, and requires the data files
be re-imported.


	File locations are now tracked in a registry.db registry such that the
files can be located anywhere. The information from the json sidecar
files are also included in the database.


	Ontology terms are now imported via an OBO file instead of the old
pre-packaged sequence_ontology.txt file. A sample OBO file has been
added to the sample data set for the reference server.


	Added a custom landing page option for the main page of the server.


	Performance improvement for variant search when calls are set to an empty
string.


	Improved server configuration including Apache configuration and
robots.txt file.







0.2.2

Alpha pre-release supporting major feature update. This release is backwards
incompatible with previous releases, and requires a revised data directory
layout.


	Added sequence and variant annotations (which introduces a sqlite
database component)


	Added repo manager, a command line tool to manage data files and
import them into the server’s data repository


	Supported searching over multiple ReadGroups, so long as they are
all in the same ReadGroupSet and all of the ReadGroups in the
ReadGroupSet are specified







0.2.1

Bugfix release that fixes a problem introduced by upstream package changes




0.2.0

Alpha pre-release supporting major schema update. This release is backwards
incompatible with previous releases, and requires a revised data directory
layout.


	Schema version changed from v0.5 to v0.6.0a1


	Various backwards incompatible changes to the data directory layout


	Almost complete support for the API.


	Numerous code layout changes.







0.1.2

This bugfix release addresses the following issues:


	#455: bugs in reads/search call (pysam calls not sanitized, wrong
number of arguments to getReadAlignments)


	#433: bugs in paging code for reads and variants







0.1.1


	Fixes dense variants not being correctly handled by the server (#391)


	Removes unused paths (thus they won’t confusingly show up in the HTML
display at / )







0.1.0

Just bumping the version number to 0.1.0.




0.1.0b1

This is a beta pre-release of the GA4GH reference implementation. It includes


	A fully functional client API;


	A set of client side tools for interacting with any conformant server;


	A partial implementation of the server API, providing supports for variants and
reads from native  file formats.







0.1.0a2

This is an early alpha release to allow us to test the PyPI package and
the README. This is not intended for general use.









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Profiling the Reference Server

We have learned a lot about profiling the code of the reference server,
but there are some tricks to getting meaningful output. This section spells out
a configuration that seems to work. As one can imagine, profiling a python program
running under Apache is very difficult. It is better to run the server from the command
line when using the python profiler. The other barrier to profiling
that we found was caused by the reloader, so we had to tell python to not use the
reloader. Finally, we found it best to disable the flask debugger (which is on
by default if you run the server from the command line) because the debugger
will cause every error message to be printed to the screen, which is in addition
to the printout we already get from our exception handler. Leaving the debugger on
will result in all exceptions print out twice.


Running the profile:

python -m cProfile -s cumulative -o profile.out ko-server/server_dev.py -H 100.70.26.73 --dont-use-reloader --config-file /srv/ga4gh/config.py








Evaluating the profile output:

If you don’t use the -o {output file} option then all output from the profiler
runs to stdout and will be sorted with the function that takes the most
cumulative time at the top of the list. You can review the text output
manually, but a beter method is to use the -o option and then review the
output using a nifty little program we found that interactively browses
the function list. It provides a way to change the sorting and it also links
the functions together so that you can follow the called and caller stacks.
This is pretty handy. You can install and run it like this:

sudo pip install cprofilev
cprofilev -f profile.out -a 100.70.26.73





Note that it takes the ‘’‘profile.out’‘’ file that was generated by the cProfile
run. To review the output simply point your browser to http://localhost:4000







          

      

      

    

  _static/down-pressed.png





_static/down.png





_images/Credentials_-_ga4gh.png
Google ole | gatgh ~
Overview OAuth No clie
Permissions OAuth 20 allows usersto share

specifc data with you (for
AR L L0 example, contact lists) while
APls Keeping therrusernames,
R passwords, and other information
pivate
Consent screen b /
Push
Monitoring £ A

Source Code





_static/logo_ga.png
Global Alliance
for Genomics & Health






_images/Credentials_-_ga4gh_2.png
Create Client ID.

Application type
@ Web application
‘Accessed by web browsers over a network
Service account
Calls Google APIs on behalf of your application instead of an end-user. Learn more

Installed application
Runs on a dieskiop computer or handheld device (like Android or iPhone).

Authorized Javaseript origins
Cannot contain a wildcard (nttp:/* example.com) or a path (nttp://examle.com/subdir).

One URI per line. Needs to have a protacol, no URL fragments, and no relative paths. Can't
be a public IP Address.

itps://localhost/oauth2calloack]

R | cancel





_static/minus.png





_images/Consent_screen_-_ga4gh.png
Google ! gsdgh ~

Overview

Note: This screen will be shown for
Permissions project
ream Email address
APl
e Product name
Consent screen GAGGH Server
Push -
Homepage URL.
Monitoring paos

Source Code





_images/Create_project.png
hitps://console.developers.google.com/g

> C

Google ! Select a project ~

ProjectName  Project D

Manage all projects

Create a project





_static/file.png





_images/auth0-create-client-details.png
GA4GH Client

QuickStart  Settings  Addons  Connections

Name

Domain

Client ID

Client Secret

GAAGH Client

user.auth0.com

KHXXROKKXKIHKKKKIIXOKHKKK

KHXXXOKKKKIIIKKXKIXXNKKKKK

I Reveal client secret.

The Client Secret is not base64 encoded.

CLient ID: X000CXOOOOIIOOVXXXI0K

©






_static/up-pressed.png





_images/auth0-create-client.png
Create Client

Name

GA4GH Client

You can change the client name later in the client settings.

o o A

Native Single Page Web Regular Web Non Interactive

Applications Applications Clients
Mobile or Desktop,

apps that run natively AJavascript front- Traditional web app CLI, Dacmons or
end app that uses an (with refresh). Services running on

your backend.
eg: Java ASPNET

eg: Shell Script






_static/up.png





_images/Credentials_-_ga4gh_3.png
Client ID for web application

Client 1D,

Email address

Client secret
Redirect URIs hitps://localhost/oauthcallback
Javaseript origins. none

Edit settings | | Resetsecret | | Download JSON | | Delete





_static/plus.png





_images/auth0-create-api.png
Identifier

Signing

Algorithm

GAAGH API

Afriendly name for the APL

http://192.168.0.54

Alogical identifier for this APL. We recommend using a URL but
note that this doesn't have to be a publicly available URL, AuthO
will not call your APl at all. This field cannot be modified.

RS256

Algorithm to sign the tokens with. When selecting RS256 the
token will be signed with AuthO's private key.






_images/auth0-create-user.png
Create user

‘ name@host.com

Password

Repeat Password

‘ GAA4GH-DB






_images/auth0-database-details.png
GA4GH-DB

Securely store and manage username / password credentials either in an Auth0 Database or in your own store. Learn more »

Settings  Password Policy  Custom Database  Clients  Try connection

Clients Using This Connection

GAA4GH Client O

Client

GA4GH API (Test Client)

Client





_images/auth0-ga4gh-api-details.png
GAAGH Client
CLIENT ID: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Select which scopes should be granted to this client:

GRANT ID

cgr_ULBwplgrbrTUcOW.

SCOPES

 email + openid

UPDATE TEST

Select: All|None

Q Fiter scopes





nav.xhtml

    
      Table of Contents


      
        		
          GA4GH Reference Implementation
        


        		
          Introduction
        


        		
          GA4GH API Demo
          
            		
              Host the 1000 Genomes VCF
              
                		
                  Repo administrator CLI
                


                		
                  Add a Reference Set
                


                		
                  Add an ontology
                


                		
                  Add sequence annotations
                


                		
                  Add the 1000 Genomes VCFs
                


                		
                  Add a BAM as a Read Group Set
                


                		
                  Start the server
                


              


            


            		
              Use the client package
            


            		
              OIDC Demonstration
            


          


        


        		
          Installation
          
            		
              Deployment on Apache
              
                		
                  Troubleshooting
                


              


            


            		
              Deployment on Docker
              
                		
                  Advanced
                


                		
                  Troubleshooting Docker
                


              


            


            		
              Installing the development version on Mac OS X
            


          


        


        		
          Configuration
          
            		
              Configuration file
              
                		
                  Configuration Values
                


              


            


            		
              Configuring Auth0 Service
              
                		
                  Creating Client
                


                		
                  Creating API
                


                		
                  Creating Database Connections
                


                		
                  Creating Users
                


                		
                  Setting up GA4GH server with authentication
                


                		
                  Testing
                


              


            


            		
              OpenID Connect Providers
            


          


        


        		
          Data repository
          
            		
              Command Line
              
                		
                  init
                


                		
                  list
                


                		
                  list-announcements
                


                		
                  clear-announcements
                


                		
                  verify
                


                		
                  add-peer
                


                		
                  remove-peer
                


                		
                  add-dataset
                


                		
                  add-referenceset
                


                		
                  add-biosample
                


                		
                  add-individual
                


                		
                  add-ontology
                


                		
                  add-variantset
                


                		
                  add-readgroupset
                


                		
                  add-featureset
                


                		
                  add-continuousset
                


                		
                  init-rnaquantificationset
                


                		
                  add-rnaquantification
                


                		
                  add-rnaquantificationset
                


                		
                  add-phenotypeassociationset
                


                		
                  remove-dataset
                


                		
                  remove-referenceset
                


                		
                  remove-biosample
                


                		
                  remove-individual
                


                		
                  remove-ontology
                


                		
                  remove-variantset
                


                		
                  remove-readgroupset
                


                		
                  remove-featureset
                


                		
                  remove-continuousset
                


                		
                  remove-rnaquantificationset
                


                		
                  remove-phenotypeassociationset
                


              


            


          


        


        		
          Development
          
            		
              Development environment
            


            		
              Using Development Constraints
            


            		
              GitHub workflow
            


            		
              Contributing
            


            		
              Development utilities
            


            		
              Organization
            


            		
              Git Workflow Appendix
              
                		
                  Don’t use git pull
                


                		
                  Squash, then rebase
                


                		
                  GitHub’s broken merge/CI model
                


                		
                  Managing long-running branches
                


              


            


            		
              Release process
              
                		
                  Development releases
                


                		
                  Stable bugfix release
                


                		
                  Releasing multiple repositories
                


              


            


          


        


        		
          Status
          
            		
              Release Notes
              
                		
                  0.3.6
                


                		
                  0.3.5
                


                		
                  0.3.4
                


                		
                  0.3.3
                


                		
                  0.3.2
                


                		
                  0.3.1
                


                		
                  0.3.0
                


                		
                  0.2.2
                


                		
                  0.2.1
                


                		
                  0.2.0
                


                		
                  0.1.2
                


                		
                  0.1.1
                


                		
                  0.1.0
                


                		
                  0.1.0b1
                


                		
                  0.1.0a2
                


              


            


          


        


      


    
  

_images/auth0-token.png
Your API Token

‘Your token is now active, add it as your "Authorizati

: bearer STOKEN" header when making requests to protected endpoints

eyJ0eXAL01IKVIQiLCINbGCi01ITUZTINII9 . ey bWFPbCT6IndLbGWZMD1AZ2 ThaWwuY 29t Tiwi ZW1hahix fdmVyaWZpZWiOnzhbHNLCIpc3Mi0iJodHRwcz0
VL3d1bGxpdGIULMF 1d6gwLmNvbS81LCI2dWI101IhdXROMHWL0GF LMDYZMTayY jB] YTA3NZQ2M2VhM2T 1L CIhdWQ101vQVMaVWh3Z2h NnZRdWpreWd I TmoyQkp
'YV1hncHBpQSTSImVACCI6MTQ4NZY Z0TQXMSwWiaWFOT j oxNDg3Nj AZNDEX Q. wNCKrLIYdx9tyLdQFNT3bC_UL5q5CW2ELcX22]GTE

Visit landing page





_images/logo_ga.png
Global Alliance
for Genomics & Health






_images/auth0-ga4gh-scopes.png
GA4GH API

QuickStart  Settings  Scopes  Non Interactive Clients ~ Test

Scopes allow you to define the data that will be accessed through the applications to your API. Set a name for them and its
description for better understanding

After you have added your scope, in order to actually use it, make sure that you head over to the Non Interactive Clients area of this

APL.There, you'll be able to assign your newly added scope to any of your Clients that need it

Name email Description Email

Name openid Description OpeniD

Name Descripti

ADD





_images/auth0-new-database.png
New Database Connection

Settings
Name GA4GH-DB
Must start and end with an alphanumeric character and can nly
contain alphanumeric characters and " Can't have more than 35
characters.
Requires Username QO

Requires the user to provide an usemame in addition to em:

Userame length

Set the minimum and maximum values allowed for a user to have as username.

[ (70U NEED 70 ENABLE REQUIRES USERNAME IN ORDER T0 USE THE USERNAME LENGTH SETTINGS

Min |

Disable Sign Ups O

Check this if you want to prevent sign ups to your application. You will sill be able to create users with your api

credentials or from the dashboard.

CREATE





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





